DOI QR코드

DOI QR Code

Physicochemical Properties and Antioxidant Activities from Hot-air and Freeze Dried Aged Black Ginger (Zingiber officinale)

열풍 및 동결건조에 따른 숙성 흑생강의 이화학적 특성 및 항산화 활성

  • Kim, Hun-Hwan (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Lee, Soo-Jung (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Chung, Yoon-Ho (Namhaegun Blackgarlic Co., Ltd.) ;
  • Kim, Sung-Hee (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Sung, Nak-Ju (Department of Food Science and Nutrition, Gyeongsang National University)
  • 김훈환 (경상대학교 식품영양학과) ;
  • 이수정 (경상대학교 농업생명과학연구원) ;
  • 정윤호 (남해군흑마늘주식회사) ;
  • 김성희 (경상대학교 식품영양학과) ;
  • 성낙주 (경상대학교 식품영양학과)
  • Received : 2017.09.22
  • Accepted : 2018.01.08
  • Published : 2018.02.28

Abstract

Hot-air and freeze dried powder from aged black ginger were mixed under the ratio conditions of sample "A" (8:2), "B" (5:5), "C"(2:8), "D" (10:0) and "E" (0:10), respectively. The physicochemical properties and antioxidant activities in the 5 kinds of powder were compared. The water absorption index was significantly higher in freeze dried powder, and it tended to be significantly increased depend on the ratio of freeze dried sample. The browning intensity was significantly higher in the hot-air dried samples, but the color intensity was not significant. Total and reducing sugar contents were significantly higher in freeze dried sample. Total sugar content in mixed sample tended to significantly increased as the amount of freeze dried sample. Total phenol content was significantly higher in the sample "A". The contents of gingerol and shogaol were significantly higher in mixed sample "A", 6-gingerol content showed no significant difference according to the drying method. Cholesterol absorption activity was significantly higher in the freeze dried sample "E". The DPPH radical scavenging activity showed a little difference according to the drying method, but the ABTS radical scavenging activity and reducing power in the hot-air dried sample were significantly higher than those of freeze dried. And the activity of mixed powder "A" was significantly higher than others. These results suggest that aged black ginger was superior in terms of quality and functionality of the hot-air drying compared to freeze-drying, and it would be economically effective to the mixed sample "A".

흑생강의 기능성 극대화와 산업화를 위하여 건조방법과 혼합비를 달리한 흑생강 분말의 이화학적 특성과 항산화 활성을 비교 분석하였다. 시료의 조제는 열풍 및 동결건조시킨 흑생강 분말과 이들의 혼합비에 따라 각각 시료 "A" (8:2), "B" (5:5), "C" (2:8), "D" (10:0) 및 "E" (0:10)로 구분하였다. 시료의 수분흡수지수와 수분용해지수는 동결건조 시료에서 유의적으로 높았으며, 동결건조 시료의 비율이 클수록 수분흡수지수가 유의적으로 증가되는 경향이었다. 갈색물질의 함량은 동결건조에 비해 열풍건조한 시료에서 유의적으로 높았으나, 시료의 색차는 모든 시료에서 유의차가 없었다. 총당 및 환원당 함량은 열풍건조에 비해 동결건조 시료에서 유의적으로 높았는데, 혼합시료 중 총당은 동결건조 시료의 함량이 많아짐에 따라 유의적으로 증가되었다. 총 페놀 및 플라보노이드 함량은 동결건조보다 열풍건조 시료에서 많았으며, 혼합시료에서도 열풍건조 시료의 첨가량이 많을수록 유의적으로 증가되었다. Gingerol과 shogaol 함량은 혼합시료 "A"에서 유의적으로 높았으나, 6-gingerol은 건조방법에 따른 유의차가 없었다. 콜레스테롤 흡착활성은 동결건조 시료 "E"에서 유의적으로 높았다. DPPH 라디칼 소거활성은 건조방법에 따른 유의차가 적었으나, ABTS 라디칼 소거활성 및 환원력은 열풍건조 시료가 동결건조 시료에 비해 유의적으로 높았으며, 혼합시료에서는 "A"의 활성이 유의적으로 높았다. 따라서 열풍건조된 흑생강은 동결건조에 비해 품질이나 기능성 측면에서 우수하였으며, 특히 열풍 및 동결건조 시료를 8:2(w/w)로 혼합한 경우 기능성이나 산업성이 가장 우수한 것으로 판단되었다.

Keywords

References

  1. Aeschbach, R., Loliger, J., Scott, B. C., Murcia, A., Butler, J., Halliwell, B. and Aruoma, O. I. 1994. Antioxidant actions of thymol, carbacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 32, 31-36. https://doi.org/10.1016/0278-6915(84)90033-4
  2. Ban, Y. J., Baik, M. Y., Hahm, Y. Y., Kim, H. K. and Kim, B. Y. 2010. Optimization of processing conditions for making a black ginger and design mixture for black ginger drinks. J. Food Eng. 14, 112-117.
  3. Benzie, I. F. F. and Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of " antioxidant power" : the FRAP assay. Anal. Biochem. 239, 70-76. https://doi.org/10.1006/abio.1996.0292
  4. Beom, H. J., Kang, D. J., Lee, B. D., Shon, J. H., Im, J. S. and Eun, J. B. 2007. Physicochemical characteristics of powder from hot air and freeze dried leaves and roots of Acorous calamus L. J. Kor. Soc. Food Sci. Nutr. 36, 1451-1457. https://doi.org/10.3746/jkfn.2007.36.11.1451
  5. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  6. Cho, K. M., Jeong, S. H. and Seo, W. T. 2015. Physicochemical properties and biological activities of black garlic (Allium sativum L.) shoot. J. Agric. Life Sci. 49, 189-199.
  7. Chun, Y. G. and Chung, H. Y. 2011. Quality properties of fermented gingers. Kor. J. Food Sci. Technol. 43, 249-254. https://doi.org/10.9721/KJFST.2011.43.3.249
  8. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebert, P. A. and Smith, F. 1956. Colorimetric method for determination of sugar and related substance. Anal. Chem. 28, 350-356. https://doi.org/10.1021/ac60111a017
  9. Ezhilarasi, P. N., Indrani, D., Jena, B. S. and Anandharamakrishnan, C. 2013. Freeze drying technique for microencapsulation of garcinia fruit extract and its effect on bread quality. J. Food Eng. 117, 513-520. https://doi.org/10.1016/j.jfoodeng.2013.01.009
  10. Gutfinger, T. 1981. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 58, 966-968. https://doi.org/10.1007/BF02659771
  11. Hasler, C. M. 1998. Functional foods: their role in disease prevention and health. Food Technol. 52, 63-69.
  12. Hong, J. H. and Lee, W. Y. 2004. Quality characteristics of osmotic dehydrated sweet pumpkin by different drying methods. J. Kor. Soc. Food Sci. Nutr. 33, 1573-1579. https://doi.org/10.3746/jkfn.2004.33.9.1573
  13. Hong, J. Y., Nam, H. S., Yoon, K. Y. and Shin, S. R. 2012. Antioxidant activities of extracts from fermented black jujube. Kor. J. Food Preserv. 19, 901-908. https://doi.org/10.11002/kjfp.2012.19.6.901
  14. Isa, Y., Miyakawa, Y., Yanagisawa, M., Goto, T., Kang, M. S., Kawada, T., Morimitsu, Y., Kubota, K. and Tsuda, T. 2008. 6-Shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-alpha mediated downregul ation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 373, 429-434. https://doi.org/10.1016/j.bbrc.2008.06.046
  15. Jang, S. A. and Moon, S. K. 2005. Analysis of total sugar by extraction condition and material to develop the extraction process of ginseng polysaccharide. Kor. J. Food Preserv. 12, 367-371.
  16. Jeon, Y. H., Lee, J. W., Son, Y. J. and Hwang, I. K. 2016. Characteristics and sensory optimization of taro (Colocasia esculenta) under different aging conditions for food application of black taro. Kor. J. Food Sci. Technol. 48, 133-141. https://doi.org/10.9721/KJFST.2016.48.2.133
  17. Jo, K. S. 2000. Analysis of gingerol compound of raw ginger and its paste by high performance LC/MS. J. Kor. Soc. Food Sci. Nutr. 29, 747-751.
  18. Kim, D. E. 2007. Shading light and covering mantle method influence to grow and quantity of ginger. MS dissertation, Gong-Ju University, Gong-Ju, Korea.
  19. Kim, K. S. 1987. Effect of mixing ratios of active ingredient on content uniformity tablets. Yakhak Hoeji 31, 343-346.
  20. Kim, J. H., Kwak, D. Y., Choi, M. S. and Moon, K. D. 1999. Comparison of the chemical compositions of Korean and Chinese safflower (Carthamus tinctororius L.). Kor. J. Nutr. 31, 912-918.
  21. Kim, J. S., Koh, M. S., Kim, Y. H., Kim, M. K. and Hong, J. S. 1991. Volatile flavor components of Korean ginger (Zingiber officinale Roscoe). Kor. J. Food Sci. Technol. 23, 141-149.
  22. Kim, J. W., Lee, S. H., No, H. K., Hong, J. H., Park, C. S. and Youn, K. S. 2013. Effects of pretreatment and drying methods on quality and antioxidant activities of dried jujube (Zizyphus jujuba) fruit. J. Kor. Soc. Food Sci. Nutr. 42, 1242-1248. https://doi.org/10.3746/jkfn.2013.42.8.1242
  23. Kim, J. Y., Lee, Y. C., Kim, Y. C., Kim, Y. B. and Choi, H. W. 2016. Research on processing properties of yam (Disocorea batatas) by drying methods and milling methods. Food Eng. Prog. 20, 307-313. https://doi.org/10.13050/foodengprog.2016.20.4.307
  24. Kim, M. H., Kim, M. K., Yu, M. S., Song, Y. B., Seo, W. J. and Song, K. B. 2009. Dehydration of sliced ginger using maltodextrin and comparison with hot-air dried and freeze-dried ginger. Kor. J. Food Sci. Technol. 41, 146-150.
  25. Kim, M. J., Kim, I. J., Nam, S. Y., Lee, C. H., Un, T. and Song, B. H. 2006. Effects of drying methods on content of active components, antioxidant activity, and color values of Saururus chinensis Bail. Kor. J. Med. Crop Sci. 14, 8-13.
  26. Kim, Y. J., Lee, Y. G., Choi, Y. W. and Kim, Y. C. 2008. Effects of drying conditions on the profile of volatile terpenoid and colour of Schizandra fruit (Schizandra chinensis Fruchis). J. Life Sci. 18, 1066-1071. https://doi.org/10.5352/JLS.2008.18.8.1066
  27. Ko, J. W., Lee, W. Y. and Lee, J. H. 1999. Absorption characteristics of dried shiitake mushroom powder using different drying methods. Kor. J. Food Sci. Technol. 31, 128-137.
  28. Ku, K. H., Choi, E. J. and Park, J. B. 2008. Chemical component analysis of red pepper seeds with various cultivars. Food Sci. Biotechnol. 37, 1084-1089.
  29. Kurozawa, L. E., Terng, I., Hubinger, M. D. and Park, K. J. 2014. Ascorbic acid degradation of papaya during drying: Effect of process conditions and glass transition phenomenon. J. Food Eng. 123, 157-164. https://doi.org/10.1016/j.jfoodeng.2013.08.039
  30. Lee, B. S., Ko, M. S., Kim, H. J., Kwak, I. S., Kim, D. H. and Chung, B. W. 2006. Separation of 6-gingerol from ginger (Zingiber officinale Roscoe) and antioxidative activity. Kor. J. Biotechnol. Bioeng. 21, 484-488.
  31. Lee, E. J., Yang, S. A., Choi, H. D., Im, H. G., Whang, K. and Lee, I. S. 2011. Comparison of gingerols in various fractions and the antioxidant effects of supercritical fluid extracts from ginger. Kor. J. Food Sci. Technol. 43, 469-474. https://doi.org/10.9721/KJFST.2011.43.4.469
  32. Lee, H. R., Lee, J. H., Park, C. S., Ra, K. R., Ha, J. S., Cha, M. H., Kim, S. N., Choi, Y. M., Hwang, J. B. and Nam, J. S. 2014. Physicochemical properties and antioxidant capacities of different parts of ginger (Zingiber officinale Roscoe). J. Kor. Soc. Food Sci. Nutr. 43, 1369-1379. https://doi.org/10.3746/jkfn.2014.43.9.1369
  33. Lee, M. H., Kim, K. T. and Lee, K. H. 2012. Quality characteristics of ginger (Zingiber officinale Roscoe) as the ripening periods. J. Fd. Hyg. Safety 27, 479-486. https://doi.org/10.13103/JFHS.2012.27.4.479
  34. Lee, S. J., Shin, S. R. and Yoon, K. Y. 2013. Physicochemical properties of black doraji (Platycodon grandiflorum). Kor. J. Food Sci. Technol. 45, 422-427. https://doi.org/10.9721/KJFST.2013.45.4.422
  35. Miller, G. L. 1959. Use of dinitrosalicylic and reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  36. Moon, J. H., Kim, R. S., Choi, H. D. and Kim, Y. S. 2010. Nutrient composition and physicochemical properties of Korean taro flours according to cultivars. Kor. J. Food Sci. Technol. 42, 613-619.
  37. Moreno, M. I. N., Isla, M. I., Sampietro, A. R. and Vattuone, M. A. 2000. Comparison of the free radical-scavenging activity of propolis from severals regions of Argentina. J. Ethnopharmacol. 71, 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  38. Park, S. J., Lee, J. S., Hoe, Y. H., Moon, E. Y. and Kang, M. H. 2008. Physiology activity of barley leaf using different drying methods. J. Kor. Soc. Food Sci. Nutr. 37, 1627-1631. https://doi.org/10.3746/jkfn.2008.37.12.1627
  39. Peleg, H., Naim, M., Rouseff, R. L. and Zehavi, U. 1991. Distribution of bound and free phenolic acids in oranges (Citrus sinensis) and grapefruit (Citrus paradisi). J. Sci. Food Agric. 57, 417-426. https://doi.org/10.1002/jsfa.2740570312
  40. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Riceevans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  41. Saravanan, G., Ponmurugan, P., Deepa, M. A. and Senthil-kumar, B. 2014. Antiobesity action of gingerol: effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. J. Sci. Food Agric. 94, 2972-2977. https://doi.org/10.1002/jsfa.6642
  42. Shin, J. H., Choi, D. J., Lee, S. J., Cha, J. Y., Kim, J. G. and Sung, N. J., 2008. Changes of physicochemical components and antioxidant activity of garlic during its processing. J. Life Sci. 18, 1123-1131. https://doi.org/10.5352/JLS.2008.18.8.1123
  43. Soh, H. S., Kim, C. D. and Lee, S. P. 2003. A new in vitro assay of cholesterol adsorption by food and microbial polysaccharides. J. Med. Food 6, 225-230. https://doi.org/10.1089/10966200360716643
  44. Son, J. H. and Ha, B. J. 2013. Antioxidative and antiaging effects of fermented soybean, rice bran, and red ginseng by mixed ratios. J. Food Hyg. Safety 28, 354-359. https://doi.org/10.13103/JFHS.2013.28.4.354
  45. Song, S. B., Ko, J. Y. Kim, J. I., Lee, J. S., Jung, T. W., Kim, K. Y., Kwak, D. Y., Oh, I. S. and Woo, K. S. 2013. Changes in physicochemical characteristics and antioxidant activity of adzuki bean and adzuki bean tea depending on the variety and roasting time. Kor. J. Food Sci. Technol. 45, 317-324. https://doi.org/10.9721/KJFST.2013.45.3.317
  46. Song, W. Y., Kim, Y. N., Chun, S. S., Ku, K. H. and Choi, J. H. 2011. Effects of ethanol extracts from red pepper (Capsicum annuum L.) seeds on cholesterol adsorption capacity UDP-glucuronyl transferase activity. J. Life Sci. 21, 829-837. https://doi.org/10.5352/JLS.2011.21.6.829
  47. Sung, K. C. 2010. A study on the pharmaceutical characteristics and analysis of natural ginger extract. J. Kor. Oil Chemists' Soc. 27, 266-272.
  48. Yang, C. S. T. and Atallah, W. A. 1985. Effect of four drying methods on the quality of intermediate moisture lowbush blueberries. J. Food Sci. 50, 1233-1237. https://doi.org/10.1111/j.1365-2621.1985.tb10450.x
  49. Yang, Y. R. and Park, Y. K. 2011. Black onions manufactured via the browning reaction and antioxidant effects of their water extracts. Kor. J. Food Preserv. 18, 310-318. https://doi.org/10.11002/kjfp.2011.18.3.310