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Background: Metabolic modeling has been an essential tool in metabolic reconstruction, which has dramatically advanced in 

the last decades as a part of systems biology. At present, the protocol for metabolic reconstruction has been systematically 

established, and it provides the basis for the analysis of complex systems, which has been limited in the past. Therefore, 

metabolic reconstruction can be adapted to analyze agricultural systems whose metabolic data has been accumulated 

recently. Purpose: The aim of this review is to suggest the suitability of metabolic modeling for understanding agricultural 

metabolic data and to encourage the potential use of this modeling in the field of agriculture. Review: We reviewed the 

procedure of metabolic reconstruction using computational modeling with applicable strategies and software tools. 

Additionally, we presented the initial attempts of metabolic reconstruction in the field of agriculture and proposed further 

applications.
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Introduction

Systems biology, which combines bioinformatics and 

computational biology, has provided an integrative insight 

of complex biological systems because of its potential 

for analyzing the accumulated data from independent 

experiments in the last decades (Kitano, 2002). As a field 

of systems biology, metabolic reconstruction plays a 

core role in solving the conundrums in our life, with over 

2000 papers published in the last 10 years. Metabolic 

reconstruction is a computer-based analysis technique 

and is used to construct a schema of the data obtained 

from several components of biological systems, such as 

genes, enzymes, metabolites, and reactions (Feist et al., 

2009). This powerful tool enables a new analysis that 

existing traditional methods cannot achieve, for e.g., 

searching dead ends and identifying missing reactions 

(Orth and Palsson, 2010).

As the first step in metabolic reconstruction, a 

metabolic database obtained from a target organism is 

required. Among various organisms, microbes, particularly 

Escherichia coli, have been widely used owing to their 

simple structure and easy cultivation properties. A 

notable metabolic reconstruction study using E. coli 

was published in 1994, in which a constraint-based 

mathematical model was developed and a flux balance 

analysis (FBA) was performed to explain its physiological 

behaviors (Varma and Palsson, 1994a; Varma and 

Palsson, 1994b). In 2000, the first genome-scale metabolic 

reconstruction was performed on E. coli (Edwards 

and Palsson, 2000), and thereafter, various methods in 

metabolic reconstruction have been gradually developed 

and used, such as flux variability analysis (FVA) and 

OptKnock (Mahadevan and Schilling, 2003; Burgard et 

al., 2003). With metabolic reconstruction, a new reaction 

that maintained the robustness of metabolism in E. coli 

was discovered (Nakahigashi et al., 2009), while meta-
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bolically engineered E. coli was developed to directly 

produce 1,4-butanediol (Yim et al., 2011). Moreover, a 

study used E. coli for synthesizing taxol, an anti-cancer 

component (Boghigian et al., 2012). In 2013, a comprehensive 

review, which summarized the direction of the current 

metabolic reconstruction performed on E. coli, was 

published by a leading group directed by Palsson 

(McCloskey et al., 2013). According to this study, metabolic 

reconstruction can be classified into six divisions 

depending on the study objective: (1) metabolic engineering, 

(2) model-driven discovery, (3) prediction of cellular 

phenotypes, (4) analysis of biological network properties, 

(5) studies on evolutionary processes, and (6) models of 

interspecies interactions. 

One of the main advantages of metabolic reconstruction 

is the simultaneous analysis of a large amount of biologi-

cal data from a target system. Hence, it is inevitable to 

use computational devices and languages, and some 

specialized tools for metabolic reconstruction have been 

developed to embed metabolic information into the 

model systems. The systems biology markup language 

(SBML) is a notable computational language widely used 

in systems biology (Hucka et al., 2003), contributing to 

establish web-based databases such as KEGG, Biocyc, 

and Reactome. In addition, some analytical methods (i.e., 

data managing, analyzing, and visualizing) have been 

discussed for analyzing the metabolic database in the 

computational analysis field. At the same time, various 

tools have been developed and utilized in the field of 

metabolic engineering depending on the purpose of the 

studies (Copeland et al., 2012). For example, constraint- 

based reconstruction and analysis (COBRA) has been 

broadly used, and it provides various functions such as 

FBA, gap filling, and knock out analysis (Becker et al., 

2007; Schellenberger et al., 2012). OptFlux is used for 

identifying the target of metabolic engineering through 

the OptKnock algorithm (Rocha et al., 2010), and FBA- 

SimVis is a specialized program that interactively combines 

the results of COBRA and visualization (Grafahrend- Belau et 

al., 2009a). Further, computational tools for showing 

comprehensive outlines or visual results have been 

developed, e.g., VANTED (Junker et al., 2006), GLAMM 

(Bates et al., 2011), and Arcadia (Villéger et al., 2010). 

As mentioned before, metabolic reconstruction is a 

powerful effort to solve the mysteries in life by figuring 

out the mechanisms of organism, and adequate utilization 

of computational tools allows effective analysis of the 

target systems. There are notable reviews regarding the 

metabolic reconstruction procedures (Ruppin et al., 2010) 

and software that are widely used in the field (Wiechert, 

2002; Copeland et al., 2012). Owing to its advantages in 

analyzing complex living systems and large data sets, 

other scientific fields besides systems and synthetic 

biology are trying to employ the methods of metabolic 

reconstruction. Especially, with the recent spotlight 

on the field of agriculture, the application of the tools 

of metabolic reconstruction has been proposed for 

comprehensively analyzing the agricultural and food 

systems because they have produced and stored large 

amounts of data, and they are as complex as the biological 

systems (Kim et al., 2016a). In this paper, therefore, we 

present the current opinions in metabolic reconstruction 

and review the metabolic modeling, the main technique 

of metabolic reconstruction. Finally, we also review the 

contemporary uses of metabolic modeling and reconstruc-

tion in the agricultural field to propose the application 

of metabolic reconstruction in agricultural research.

Review of Modeling Approaches in 
Metabolic Reconstruction

Models in metabolic reconstruction are built by the 

combination of the genome sequence and biochemical 

information, and they are used to predict metabolic 

responses under perturbations, either in genes or in 

metabolic reactions. A comprehensive protocol for 

metabolic reconstruction was proposed by Thiele and 

Palsson (2010) and assembled into five steps by Liu et al. 

(2010): (1) creation of a basic model from genome 

sequencing, (2) reconstruction of a metabolic model, (3) 

conversion to a mathematical model, (4) model analysis 

and evaluation, and (5) visualization of a model. This is 

the generally used protocol in metabolic reconstruction 

when using both genomic and metabolic data. There are 

also other studies that focus on the mathematical model 

itself for analyzing biological systems, but the basic 

procedures are mostly similar among the studies; Voit 

(2012) and Haefner (1996) proposed five steps similar to 

each other (Table 1). In this review, we propose a 4-step 

procedure for computational modeling specific to 

metabolic reconstruction based on a comprehensive 

review of both the mathematical modeling of biological 

systems and metabolic reconstruction (Figure 1).
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Table 1. Basic modeling procedure

Procedure Voit, 2012 Haefner, 2012

Step 1
selection of goals and 

objectives

selection of objectives and 

hypothesis

Step 2 model selection mathematical formulation

Step 3 model design verification

Step 4
model analysis and 

diagnosis
calibration

Step 5 model use and application analysis and evaluation

Figure 1. Application of modeling approaches in metabolic reconstruction
procedure

Step 1: Construction of a modeling database

Modeling starts with obtaining the available information, 

i.e., quantitative and qualitative data, and constructing a 

database. The initial step in modeling is actually to 

determine the basic requirement of the model for its 

development, such as modeling target, modeling 

purpose, modeling scale, and model types and structures. 

Once the modeling direction is decided, the available data 

should be explored in terms of types of data required and 

amount of available data sets. Because computational 

models in biological systems are representative of 

available information (e.g., genetic, biochemical, and 

physiological data), empirical data (both qualitative and 

quantitative) is the basis of the model developed. 

Generally, computational modeling in metabolic 

reconstruction is a genome-scale model, which identifies 

the metabolism in organisms in conjunction with genes 

(Durot et al., 2009). Thus, the typical data required are 

genetic information, enzymatic data derived from the 

genes, metabolite affected by the enzyme, and cell 

organelle where the biochemical reaction occurred. The 

information of a gene can be experimentally obtained by 

genome sequencing, and some available data are built 

in a specific program and website (e.g., http://www. 

ebi.ac.uk/). The enzymatic information and metabolites 

in a biochemical reaction are defined as an EC number, a 

commission number of enzyme reactions (Bairoch, 

1994), systemically linked to a biochemical reaction 

database, such as KEGG (Kanehisa and Goto, 2000) and 

BRENDA (Schomburg et al., 2002). Ultimately, the 

obtained data enable to list the biochemical reactions, 

which constitute the computational model. 

The second phase of the first step is to construct a 

database from the obtained data so that it can be used for 

model development. That is, it is necessary to convert the 

obtained data into a suitable form so that it is directly 

applicable and suitable for modeling. This is because 

most of the empirical data are recorded with a form 

determined by the study objectives and do not consider 

their further usage in modeling. Typically, there could be 

a large difference in the units of metabolites among 

different research articles. For solving these inconsistency, 

pre-processing of data for image processing (Hwang and 

Fu, 1983), data integration for central composite design 

in response to the surface methodology (Montgomery, 

2008), and unit consistency in time-series data (Sasidharan 

et al., 2012) are examples that we can easily observe. 

Therefore, the first step would be to make the various 

scales in the obtained data consistent. This process 

includes not only unit consistency but also correction of 

the experimental environments. Then, we need to apply 

simple statistics to the obtained data to eliminate noise 

and outliers, to derive their representative values in the 

case of large groups of data, and sometimes to normalize 

the data into a dimensionless form. Finally, the complete 

modeling database can be constructed by arranging the 

processed data according to the main variables (e.g., 

sorting data by metabolite types and by time). This 

database now becomes available for modeling, particularly 

for parameter estimation and model validation (herein, 

the sub-processes in step 3).

Step 2: System reconstruction and mapping

The second step is to reconstruct the target system 
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based on the collected information. In this process, we 

aim to construct a map or network of metabolic/genetic 

pathways to be modeled by integrating the partial 

information collected from relevant previous studies and 

data. This mapping step requires the evaluation of 

previous models, uncommon chemical reactions (i.e., 

biomass reaction), and gene expression (Palsson, 2006). 

Ultimately, we have to determine which pathways would 

be included and excluded, and to develop a metabolic 

map, which clearly represents our modeling target. For 

example, transport systems, which are caused by osmotic 

pressure or diffusion in the organism, such as extracellular 

transport reactions, intracellular transport reactions, 

and exchange reactions, are sometimes not coded in gene 

annotations, and thus, they are not included in the 

database developed in step 1. Therefore, it is required to 

add some necessary reactions that improve network 

connectivity and reduce the dead-end metabolites (Durot 

et al., 2009). In addition, biomass-related reactions 

containing information regarding the energy required 

for cell growth and maintenance need to be added. This 

type of information can be generally obtained from 

empirical data (Liu et al., 2010). The complexity of 

biological systems, generally caused by the numerous 

interactions among their components, limits the 

realization of comprehensive experiments. This means 

that most of the available empirical data exist in a 

piecewise form, and thus, it is difficult to integrate them 

into a complete metabolic map, which requires intensive 

review of literature for constructing a database to be used 

in modeling. Moreover, large variation even in the same 

domain makes this step more difficult. For example, the 

lignin biosynthesis in Populus xylem and that in 

switchgrass are different (Lee and Voit, 2010; Faraji et al., 

2015). Compared to the available information on populous 

xylem, that on lignin biosynthesis in switchgrass is 

relatively insufficient. For this reason, we need to 

reconstruct the process by combining information obtained 

from similar species (Faraji et al., 2015).

Step 3: Mathematical modeling

Once the target metabolism is reconstructed, its map is 

converted into a mathematical formulation. In other 

words, in the third step, a mathematical equation is 

developed wherein the mathematical formulation defines 

the model structure, which is determined by the purpose 

of modeling and desired outcomes. This process 

corresponds to steps 2~4 presented in Table 1, and its 

practical modeling procedures, which are carried out 

through the following process, are reviewed by Kim et al. 

(Kim et al., 2016a).

Model design
Generally, mathematical modeling is classified by 

several standards (Kim et al., 2016a). Voit et al. (2012) 

categorized the mathematical models into two classes: 

correlative and explanatory models. Based on their 

textbook, a correlative model uses statistics to develop an 

equation for predicting the target by the correlated 

factors, but it cannot explain the mechanism underlying 

the target system. In contrast, the explanatory model 

explains the mechanism of a biological process while 

simultaneously identifying the target phenomenon, and 

it is generally expressed as a series of differential 

equations (Voit et al., 2012). The mechanistic model (or 

explanatory model) can be divided into steady-state (the 

system property is not changed by time) and dynamic 

(the system property changes over time) models. 

Parameter estimation
In the initial formulation, the equations are coded by 

symbolic parameters and variables, which represent 

properties of biochemical reactions (e.g., constant rate), 

and metabolites (e.g., affinity of enzyme and substrate, 

and kinetics). In the next formulation, numeric values are 

assigned to the symbolic parameters, and this is called 

parameter estimation. The estimating parameters and 

the formation vary with model state depending on 

whether it is divided as a dynamic model or a static 

model. 

A steady-state model, which means it does not change 

with time, is mainly used for calculating the flux at a 

steady state or measurement of gene expression degree, 

within the assumption of constraint modification, to 

explain a behavior close to that of a living organism. If the 

constraint modifications are not applied, it would not 

reflect the behavior of living organisms at steady-state 

because of the error caused by the absence of constraint 

modifications. Commonly, four types of environmental 

constraints are supposed, as follows: flux balance (S·v = 0), 

energy balance (ΔE = 0), enzyme or transporter capacity 

(vi ≤ vmax), and thermodynamics (0 ≤ vmin) (Shlomi et 

al., 2005). The mathematical format is a tabulation 

consisting of metabolites and reaction, which is called 



Kim et al. Review of Current Approaches for Implementing Metabolic Reconstruction
Journal of Biosystems Engineering • Vol. 43, No. 1, 2018 • www.jbeng.org

49

S-matrix. This formula is simpler than the formula of a 

dynamic model, and less data are required for the 

parameter. 

On the contrary, a dynamic model reflecting a 

significant change in time is composed of a series of 

differential equations. It requires time-series data as the 

response values of each parameter depends on the time 

change, which requires a huge amount of quantitative 

data and modeling work. Therefore, it is hard to estimate 

the available mathematical parameter because of its 

complexity, but this could be improved by some 

techniques, such as smoothing overly noisy data and 

estimating slopes of time series (Chou and Voit, 2009). 

Although the acquiring process of the parameter 

estimation is relatively difficult, a dynamic model can 

explain the variance or response under a particular 

environment, such as changes in immunized, infected, 

and susceptible individuals over time with respect to the 

rate of birth, immigration, death, vaccination, and initial 

number of individuals (Kanehisa and Goto, 2000; Voit et 

al., 2012).

Model validation
After completing the parameter estimation, the 

computational model is built using a mathematical 

formulation with numeric parameters, indicating that the 

model is ready to be solved. Before solving the model, 

model validation is conducted i.e., testing whether the 

adequate developed model is required. In other words, it 

is necessary to confirm the similarity between the 

predicted values and practical values of the developed 

model, which shows that the followed steps based on this 

model are valid. Model validation requires experimental 

data of the same target and it can be acquired through two 

ways. One is to obtain it from previous studies and the 

other is to separate out the validation data in the 

parameter estimation step. Various experiments have 

been carried out and published, and if an experimental 

study on the same target could be found, it would be easy 

to acquire from it the validation data. However, it is rare 

to find completely suitable data, and the units should be 

checked and converted when gathering the data. For 

example, Lee and Okos performed validation of the 

established model in their bone cell modeling paper by 

using data from previous studies before simulating the 

action of IGF-1 (Lee and Okos, 2016). Validation can also 

be applied for testing the accuracy of the scenarios in the 

last step of the following stage through the process of 

characteristic verification.

Step 4: System analysis

The main objective of this step is to resolve the 

developed model and to conduct its analysis. This means 

that we need to carry out the test of the hypothesis set 

earlier and identify the characteristics of system response 

under various conditions. Most biological models are 

established using a series of differential equations, called 

system equations, and thus, a numerical analysis is 

necessary along with the determination of initial values. 

Once the solution is found, further analysis is available by 

conceiving various scenarios that we would like to 

simulate. These simulations may give an insight about the 

target system, and they can sometimes be used for 

discovering the mechanisms under a specific situation. 

As aforementioned, the numerical analysis is inevitable 

for solving and analyzing the model. In other words, to 

apply the numerical analysis, a computational tool is 

required, and some software is available that includes 

internal algorithms coding fundamental mathematical 

principles. For example, the COBRA toolbox developed 

for MATLAB and python language is one of the most 

widely used open source in silico modeling software.

Tools and Software for Metabolic 
Modeling in Metabolic Reconstruction

Contemporary metabolic modeling is actively utilized 

in metabolic reconstruction, and systems and synthetic 

biology has a highly complex structure requiring compu-

tational software in most of the steps (Copeland et al., 

2012). In the past decades, various tools have been 

developed to facilitate the analysis of the target system 

and to increase the model accuracy (Copeland et al., 

2012). Herein, we categorize these software tools 

according to three modeling steps: 1) metabolic database 

construction (tools for constructing the database, including 

genetic, biochemical, and physiological data from the 

target system), 2) computational solver (tools for solving 

the reconstructed model), and 3) systematic analysis 

(tools for performing a system-level analysis, including 

visualization of the reconstructed network) (Copeland et 

al., 2012). In this section, we largely focus on introducing 

some useful sources and their applications through the 
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aforementioned computational modeling steps, based on 

a literature review. 

Sources useful for metabolic database 

management: for steps 1 and 2

Metabolic reconstruction is a study on identifying the 

characteristics and functions of metabolic components in 

organisms by connecting metabolic data with genomic 

data. Therefore, construction of metabolic data is the 

important first step for subsequent model development, 

and it affects the model accuracy and reliability. This 

first step of data acquisition can be divided into two 

categories: 1) database construction, and 2) target data 

screening and selection. Because database management 

is a large field and serves as the basis of bioinformatics, 

this study focuses on the construction and use of 

databases for computational modeling. Computational 

modeling requires data for parameter estimation and 

model validation, as previously suggested. Thus, it is 

necessary to collect experimental data of a previous 

study or to find a public database, and then process them 

to be in a suitable form for modeling. In general, the 

applicable tools for database construction depend on the 

size of data. For example, universal tools, such as EXCEL 

and ACCESS, can be used for small-sized data, which is 

required for small-scale modeling. In addition, text files 

have been used to store data, but data importing is 

required to insert it into the modeling software. In 

contrast, in the case of high-throughput omics data or raw 

spectrum data, it is more efficient to use tools specialized 

for database construction (e.g., SQL and MATLAB) 

because they have better processing speed and ability to 

manage large-volume data. For example, hyperspectral 

image data, which has been applied to develop a model 

for detecting biochemical and physical differences 

between target products, exceeds 4 GB in size (Bajwa et 

al., 2004). Sometimes, we may not experimentally obtain 

the relevant information or may have limited access to 

the previous data. For example, BLAST, a tool for 

comparative analysis strategy, attempts to identify a new 

pathway by using the local sequence alignment method, 

which finds the statistically significant match by 

comparing the query sequence and database (Altschul et 

al., 1990). Hence, it is necessary to access the sequence 

data, such as nucleotide or protein, and information is 

important for developing a genome-scale metabolic 

model. In case a part of the necessary data is not 

accessible due to the complexity of the system or scarcity 

of available data, there are useful public sources, such as 

the KEGG PATHWAY (Kanehisa and Goto, 2000) and 

MetaCyc (Caspi et al., 2007). These public open databases 

provide reaction maps and show the interactions among 

metabolites (e.g., substrates and enzymes). Besides the 

above tools, various data sources were developed, but 

differences among the sources in terms of representing 

the information caused errors in data mining for 

constituting the metabolic network. For this reason, 

there was a demand for comprehensively integrated 

databases, and this was solved by consistent data 

representation schema. As a result, biochemical, genetic, 

and genomic (BiGG) (Schellenberger et al., 2010) and 

MetRxn (Kumar et al., 2012) were developed. BiGG includes 

information about 7 manually curated reconstructions, while 

MetRxn integrates 8 databases and 44 metabolic models.

Tools used for system solution and 

simulation: for steps 3 and 4

Common software is used for solving the computational 

model, while specialized tools exist for simulating a 

specifically written model. MATLAB, Mathematica, and 

MathCAD are the most notable software tools that can be 

used for finding a solution for a computational model, 

particularly one written using differential equations. 

Additionally, there is a commercial software for solving 

partial differential equations, which has been applied to 

model the metabolite diffusion into or within cells 

(Hengenius et al., 2011). COBRA toolbox is a free 

metabolic reconstruction platform coded on MATLAB 

and Python (Ebrahim et al., 2013; Becker et al., 2007; 

Schellenberger et al., 2012). This COBRA toolbox is 

specialized in developing a tissue-specific model by 

matching gene expression data with metabolic reactions 

(Becker and Palsson, 2008). In addition, there are other 

specific-type software, such as WinSAAM, for physiological 

modeling (Stefanovski et al., 2003; Wastney et al., 1999), 

and PLAS, a software specialized in solving a model by the 

biochemical systems theory (BST) (Voit, 2013). Certainly, 

there are too many software tools to be introduced, and 

that is not the scope of our study. Instead, we select a 

powerful and commonly used analysis tool, metabolic 

flux analysis (MFA), and review it with the relevant 

computational tools. 

Metabolic flux is a significant determinant of cell 

physiology because it is used for predicting cell growth 
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and function by evaluating the core part of cell function, 

the target pathways, where the fluxes and regulatory 

point in a metabolic process are involved. For this reason, 

a goal of metabolic engineering is to optimally produce 

the desired metabolite and biomass by controlling flux 

distribution (Stephanopoulos et al., 1998). MFA has been 

applied to identify the flux distribution maximizing the 

desired products in an in vivo study. The basis of MFA is 

stoichiometry, which originates from chemistry, and is 

used for calculating the quantitative relationship between 

products and substrates (Gombert and Nielsen, 2000). 

The constraint is another requirement for MFA, 

particularly in constraint-based modeling. There are 

widely used constraints, such as stoichiometric constraints 

(mass balance), thermodynamic constraints (reversibility 

of a reaction), and enzymatic capacity constraints (Reed 

and Palsson, 2003). Based on the constraint-based 

stoichiometric matrix, mathematical equations explaining 

the relationship among substrates and products can be 

developed, and it is possible to calculate the solution 

space and range of a flux. As the solution space varies 

with the purpose of metabolic engineering, specific 

methodologies have been studied, such as FBA, which 

optimizes the flux distribution to maximize or minimize 

the target products (Orth et al., 2010), and extreme 

pathway and elementary model analysis frameworks, 

which define an eigenvalue in a given solution space 

(Schilling et al., 2000; Schuster et al., 1999). Especially, 

FBA is the most frequently used platform, and has been 

reviewed regarding its applications in metabolic 

engineering (Edwards et al., 2002; Bonarius et al., 1997; 

Ruppin et al., 2010; Orth et al., 2010).

Consequently, various types of software implementing 

FBA have been developed. According to Lakshmana et al. 

(2012), there are over twenty FBA software applications, 

which can be categorized into three types: stand-alone, 

toolbox-based, and web-based tools. Typical examples of 

the stand-alone tools are OptFlux (Rocha et al., 2010) and 

FASIMU (Hoppe et al., 2011), which were developed as 

independent programs for FBA. Toolbox-based tools 

mean functional expansion tools based on an existing 

program. The most widely used tools in this category are 

FBA-SimVis (Grafahrend-Belau et al., 2009a) and the 

COBRA toolbox (Schellenberger et al., 2012), based on 

VANTED (Junker et al., 2006) and MATLAB, respectively. 

Especially, when compared to other tools, the COBRA 

toolbox contains diverse algorithms, such as FVA 

(Palsson, 2006), MOMA (Durot et al., 2009), ROOM 

(Shlomi et al., 2005), dFBA (Mahadevan et al., 2002), and 

OptKnock (Burgard et al., 2003), and thus, it is used in the 

metabolic engineering field with great efficacy. Lastly, the 

web-based tools operate online, without installation of 

certain programs in the computer; thus, they require a 

web browser with an internet connection. For instance, 

GSMN-TB (Beste et al., 2007) and Model SEED (Henry et 

al., 2010) are broadly used web-based tools.

Additional useful tools for system 

visualization: for steps 2 and 4

Sometimes, visualization of a target metabolic pathway 

and network is effective when reconstructing a metabolic 

map or reporting a result of computational modeling. In 

the visibly reconstructed metabolic map, the general 

reactions and metabolites, linked using interconnected 

edges and nodes, constitute the so-called reaction 

visualizing network (Palsson, 2006). For example, 

specialized tools for visualizing the network map based 

on experimental data are the web-based GLAMM (Bates 

et al., 2011) and JAVA-based VANTED (Junker et al., 

2006). In GLAMM, data import from other data sources is 

limited as it requires tool-specific types of input. In 

contrast, VANTED uses SBML as a standard format 

(Hucka et al., 2003), and it can even import data from 

KEGG, one of most widely used metabolic databases on 

the web (Kanehisa and Goto, 2000), thus allowing high 

usability. Besides, Arcadia focuses on showing the 

biochemical system with nodes and layers representing 

the metabolic molecules (Villéger et al., 2010), and Omix 

is specialized in the constraint-based flux using carbon-13 

(Droste et al., 2013). One of the useful tools is FBA-simVis, 

which is particularly developed for FBA and FVA by 

expanding VANTED (Grafahrend-Belau et al., 2009a). 

This tool immediately reflects modifications in the 

parameters, so we can see on-time changes in flux 

distribution on the visualized map. Recently, a web-based 

visualizing application, named Escher, was developed. 

Escher provides three key functions and is operated on 

web technologies; it designs a new pathway map 

semi-automatically and visualizes the gene data on the 

related reactions (King et al., 2015). 

Visualization has the unique advantage that the 

pattern unpredicted by using a computer algorithm can 

be found through the human’s intuition and insight, 

because visualization provides the overall structure of 
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Table 2. Studies related to metabolic modeling in agricultural systems

Reference Target Description

Soil microorganism  

Resendis-Antonio et al., 2007 Rhizobium etli Reconstructs metabolic network for analyzing nitrogen fixation

Zhao et al., 2012 S. meliloti Provides overview of symbiotic nitrogen fixation process

Simons et al., 2014 Maize Demonstrates application of metabolic models for nitrogen-use efficiency

Plant  

Ouyang et al., 2006 Rice Annotates TIGR rice genome

Dharmawardhana et al., 2013 Rice Develops metabolic pathway network database for rice

Poolman et al., 2013 Rice

(Oryza sativa)

Develops genome-scale model of rice metabolism and examines its responses to light 

availability

Grafahrend-Belau et al., 2013 Barley 

(Hordeum vulgare) 

Develops multi-scale metabolic model for studying yield stability and crop improvement

Bombarely et al., 2011 Solanaceae Constructs clade-oriented database containing biological data for species in Solanaceae 

and their close relatives

Livestock  

Waghorn and Baldwin, 1984 Cow Calculates uptakes of glucose, acetate, and beta-hydroxybutyrate through metabolic 

flux model

Hanigan and Baldwin, 1994 Cow Constructs model of mammary gland metabolism

Martin and Sauvant, 2007 Cow Simulates digestive flows, metabolic pathways, and milk composition during lactation 

through dynamic model

Lemosquet et al., 2009 Cow Analyzes effect of propionate and casein on whole-body mammary metabolism of 

energetic nutrients

Kim and Seo, 2012 Cattle Describes sequencing analysis of cattle genome and presents information about feed 

efficiency of cattle

Seo et al., 2013 Cattle

(Bos taurus)

Describes unique genomic features of cattle biology

Kim et al., 2016b Cattle Reconstructs genome-scale cattle-specific metabolic pathways

Hillier et al., 2004 Chicken Drafts genome sequence of red jungle fowl, Gallus gallus

Kim et al., 2010 Chicken Reconstructs metabolic pathway of the chicken genome and chicken-specific pathway 

genome database

the target metabolism (Copeland et al., 2012). At the 

same time, we should note that it only displays the 

network structure itself, and thus researchers should be 

able to integrate the visualized target with the results 

from computational modeling. 

Application of Metabolic Modeling in 
Agricultural Systems 

Recently, genome-scale metabolic reconstruction and 

computational modeling has been used to identify 

complex mechanisms in living organisms, and thus, it 

essentially requires experimental data. For this reason, 

microorganisms have been the main target because they 

have a relatively shorter biological cycle and are easier to 

grow than high-level organisms. In particular, most of the 

studies have been focused on the microorganisms that 

produce high industrial and commercial value products 

(Yim et al., 2011, Klanchui et al., 2012, Bodor et al., 2014). 

Nevertheless, metabolic reconstruction and computational 

modeling is, to some extent, limited in the field of 

agriculture because of the characteristics of the target 

system, which has relatively longer life cycle and higher 

complexity compared to microorganisms. There is a 

notable study that targeted Sinorhizobium meliloti, a 

microorganism related to nitrogen fixation in soil (Zhao 

et al., 2012). As the recent trend in sustainable alternative 

energy increased the importance of biofuel production 

from plants, metabolic reconstruction and modeling 

have been applied to agricultural crops such as rice 

(Dharmawardhana et al., 2013, Lakshmanan et al., 2013), 

maize (Saha et al., 2011; Simons et al., 2014), and barley 
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(Grafahrend-Belau et al., 2009b). Another study suggested 

that metabolic modeling in plants was challenging owing 

to the unrevealed gene and genome content (Seaver et al., 

2012). In this section, we review previous studies on 

metabolic modeling and reconstruction approaches and 

discuss the possibility of their application in the field of 

agriculture (Table 2). 

Soil microorganisms 

Nitrogen fixation in the nitrogen cycle, a symbiotic 

association between plant and microorganisms, has been 

highlighted as it plays an important role in plant growth 

(Resendis-Antonio et al., 2007). In a 2007 study, the 

symbiotic microorganism Rhizobium etli, related to 

nitrogen fixation, was identified (Resendis-Antonio et al., 

2007). In addition, the metabolic reconstruction and 

computational modeling approach have been applied to 

S. meliloti to study the symbiotic nitrogen fixation (SNF) 

as a plausible method for sustainable agriculture and 

ecosystems (Zhao et al., 2012). In 2014, a review 

reporting the application of metabolic modeling and 

discussing the importance of nitrogen-use efficiency 

(NUE) in maize was published (Simons et al., 2014). This 

study also proposed an outline for utilizing the 

transcriptome, proteome, and metabolome datasets 

for comprehensive understanding of the nitrogen 

regulation. Future studies regarding agriculturally 

suitable microorganisms are expected to be advanced 

so that the metabolic reconstruction and modeling 

can constitute an in silico model, which predicts the 

interaction between the biological cycle of soil 

microorganisms and crops. 

Plant

Plants are the most fundamental and major food 

source for all living organisms. Recent food shortage 

problems, generally observed in underdeveloped and 

developing countries, have created a need for increasing 

crop yield. To accomplish this task, it is inevitable to 

understand the plant metabolism. This requires a 

metabolic reconstruction through computational modeling, 

which allows us to comprehend the metabolic networks 

in the plants (Grafahrend-Belau et al., 2013). The gene 

annotation of rice, which is the staple food of people in 

Asia, was completed in 2007 (Ouyang et al., 2006). In 

2013, the pathway gene database specialized for rice, 

riceCyc, was built, enabling us to perform full-scale 

reconstruction modeling for rice (Dharmawardhana et al., 

2013). Further, the first rice metabolic reconstruction was 

accomplished using the riceCyc database for interpreting 

the physiological characteristics of two types of tissues 

from sprouted seeds and photorespiration leaves 

(Poolman et al., 2013). As a result, this research revealed 

a part of the vital regulation in photorespiration and 

explained the usage trait of glycolysis and ethanol 

fermentation when utilizing oxygen in photorespiration. 

Besides riceCyc, the specific ‘cyc,’ as a pathway gene 

database specialized for particular species, was 

developed for diverse plants. For example, the Sol 

Genomics Network clade-oriented database (COD), which 

targets the Solanaceae family plants, was constructed by 

integrating the sequence information of several wild 

tomato and wild potato species (Solanum phureja) as 

hosts (Bombarely et al., 2011). This study simultaneously 

added microarray data measuring RNA-sequence and 

gene expressions to basic information of the host plant, 

and resulted in the pathway/genome database (PGDB) 

for various plants, such as Lycocyc (tomato), Solacyc 

(eggplant), Nicotianacyc (tobacco), Petuniacyc (petunia), 

Capcyc (capsicum), and Potatocyc (potato). This database 

is open to the public, and it has contributed to the 

activation of metabolic reconstruction in plants.

Livestock

As a major source of milk and meat, the dairy cattle 

metabolism has been studied using metabolic reconstruc-

tion and computational modeling. The first study on cattle 

metabolism using computational modeling was published 

in 1984, which calculated the flux of metabolites, such as 

glucose, acetate, and β- hydroxybutyrate, in mammary 

glands (Waghorn and Baldwin, 1984). Through this 

study, the initial mathematical model for the milk 

synthetic pathway was developed. Another study attempted 

to develop a mammary gland metabolism model by using 

both in vivo and in vitro data obtained from a previous 

study and experiment (Hanigan and Baldwin, 1994). In 

2007, a study reported the lactating dairy cow 

metabolism in the whole-animal model, and this 

dynamic model, which was considered as intermediate 

between simple and sophisticated models, explained the 

main metabolic flux and lactate creation according to the 

consumption of dry matter (Martin and Sauvant, 2007). 

Similarly, a research has also computationally analyzed 

the effect of casein and propionate on the mammary 
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metabolism of energetic nutrients in the whole body 

(Lemosquet et al., 2009). Meanwhile, a reconstruction of 

the metabolic pathway based on the cattle genome 

sequence was performed in 2013 (Seo et al., 2013). The 

genome sequencing data allowed species-specific 

reconstruction, compared to that based on metabolic 

reactions only, and was used for finding efficient feeding 

(Kim and Seo, 2012). Recently, the genome-scale 

cattle-specific metabolic pathway based on the updated 

cattle genome build was reconstructed, and the cattle 

PGDB was also developed (Kim et al., 2016b).

Poultry farming is another large field, and chicken has 

been an important livestock as a protein source for 

humans. In addition, it has a high academic value as a 

model of embryology and vertebrates (Seo et al., 2009). 

In 2005, its genome sequencing and analysis was 

completed. For example, the sequence and annotation of 

the Gallus gallus species, published in 2006, have been 

widely used in recent times (Hillier et al., 2004). A study 

on constructing the species-specific PGDB of chicken was 

carried out in 2010 (Kim et al., 2010). Specifically, the 

database for this model was constructed from gene data 

in the National Center for Biotechnology Information 

(NCBI) (Maglott et al., 2004) and pathway information in 

KEGG (Kanehisa and Goto, 2000). Then, gene annotation 

was implemented to the chicken pathway using pathway 

tool software. This study is interesting because it 

developed a chicken-specific reconstruction model and 

suggested a new trend in computational biology that 

integrates gene and metabolic data.

Conclusions 

In this review, we presented the current opinions on 

metabolic reconstruction in three parts: a review of 

metabolic reconstruction in relation to modeling, the 

presentation of tools and software according to the 

modeling process of metabolic reconstruction, and the 

contemporary usage of metabolic modeling and 

reconstruction in the agricultural field. Comprehensively, 

the utilization of metabolic reconstruction in agricultural 

research is in a basal phase compared to that in the 

biological field because of the difficulty in achieving an 

integrated analysis. This is caused by the complexity of 

the target and the tendency in conventional agriculture to 

focus on accumulating data. However, the fundamentals 

for comprehensive analyses through metabolic modeling 

have been lately established by constructing metabolic 

databases such as the species-specific PGDB and 

metaCyc. Based on the accumulated databases, the 

next step for applying metabolic modeling into the 

agricultural field is to develop a complete metabolic 

model for each plant and species. In a similar way to that 

followed in microbiology and pharmacy, which use 

metabolic engineering to produce a desired target, a 

complete metabolic model for a specific crop may 

provide the most effective regulatory method for 

producing functionally optimized crops. Moreover, a 

model for predicting the phenotype based on genetic 

information may become important as phenotyping has 

been recently highlighted for producing a functionally 

modified plant. For livestock, information derived from 

the linkage between whole-genome information and 

metabolism can be utilized for selecting cattle-feeding 

strategies. This review contributes to encourage the 

applicability of metabolic modeling in the agriculture 

field by suggesting the modeling procedure for metabolic 

reconstruction and presenting diverse useful computational 

tools for the analysis. Therefore, we expect that this study 

will help accelerate its utilization in the analysis of 

agricultural complex systems.
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