DOI QR코드

DOI QR Code

Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70

  • Yoo, Sooji (Department of Chemistry, Gwangju Institute of Science and Technology) ;
  • Park, Chin-Ju (Department of Chemistry, Gwangju Institute of Science and Technology)
  • Received : 2018.01.30
  • Accepted : 2018.03.04
  • Published : 2018.03.20

Abstract

Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.

Keywords

References

  1. A. Georgaki, B. Strack, V. Podust, and U. Hubscher, FEBS Lett. 308, 240 (1992) https://doi.org/10.1016/0014-5793(92)81283-R
  2. A. Johnson and M. O'Donnell, Annu. Rev. Biochem. 74, 283 (2005) https://doi.org/10.1146/annurev.biochem.73.011303.073859
  3. Y. J. Machida, J. L. Hamlin, and A. Dutta, Cell. 123, 13 (2005)
  4. S. K. Binz, A. M. Sheehan, and M. S. Wold, DNA Repair (Amst). 3, 1015 (2004) https://doi.org/10.1016/j.dnarep.2004.03.028
  5. C. Iftode, Y. Daniely, and J. A. Borowiec, Crit. Rev. Biochem. Mol. Biol. 34, 141 (1999) https://doi.org/10.1080/10409239991209255
  6. M. S. Wold, Annu. Rev. Biochem. 66, 61 (1997)
  7. M. E. Stauffer and W. J. Chazin, J. Biol. Chem. 279, 30915 (2004) https://doi.org/10.1074/jbc.R400015200
  8. A. Bochkarev and E. Bochkareva, Curr. Opin. Struct. Biol. 14, 36 (2004) https://doi.org/10.1016/j.sbi.2004.01.001
  9. L. Zou and S.J. Elledge, Science 300, 1542 (2003) https://doi.org/10.1126/science.1083430
  10. D. Shechter, V. Costanzo, and J. Gautier, Nat. Cell Biol. 6, 648 (2004) https://doi.org/10.1038/ncb1145
  11. A. Yuzhakov, Z. Kelman, J. Hurwitz, and M. O'Donnell, EMBO J. 18, 6189 (1999) https://doi.org/10.1093/emboj/18.21.6189
  12. M. L. Mayer, Nat. Struct. Mol. Biol. 12, 208 (2005) https://doi.org/10.1038/nsmb0305-208
  13. E. Bochkareva, L. Kaustov, A. Ayed, G. -S. Yi, Y. Lu, A. P. -Lucena, J. C. C. Liao, A. L. Okorokov, J. Milner, C. H. Arrowsmith, and A. Bochkarev, Proc.Natl. Acad. Sci. 102, 15412 (2005) https://doi.org/10.1073/pnas.0504614102
  14. X. Xu, S. Vaithiyalingam, G. G. Glick, D. A. Mordes, W. J. Chazin, and D. Cortez, Mol. Cell. Biol. 28, 7345 (2008) https://doi.org/10.1128/MCB.01079-08
  15. H. L. Ball, M. R. Ehrhardt, D. A. Mordes, G. G. Glick, W. J. Chazin, and D. Cortez, Mol. Cell. Biol. 27, 3367 (2007) https://doi.org/10.1128/MCB.02238-06
  16. G. Mer, A. Bochkarev, R. Gupta, E. Bochkareva, L. Frappier, C. J. Ingles, A. M. Edwards, and W. J. Chazin, Cell 103, 449 (2000) https://doi.org/10.1016/S0092-8674(00)00136-7
  17. D. L. Theobald, R. M. Mitton-Fry, and D. S. Wuttke, Annu. Rev. Biophys. Biomol. Struct. 32, 115 (2003) https://doi.org/10.1146/annurev.biophys.32.110601.142506
  18. E. Bochkareva, S. Korolev, S. P. Lees-Miller, and A. Bochkarev, EMBO J. 21, 1855 (2002) https://doi.org/10.1093/emboj/21.7.1855
  19. E. Bochkareva, V. Belegu, S. Korolev, and A. Bochkarev, EMBO J. 20, 612 (2001) https://doi.org/10.1093/emboj/20.3.612
  20. G. W. Daughdrill, J. Ackerman, N. G. Isern, M. V. Botuyan, C. Arrowsmith, M. S. Wold, and D. F. Lowry, Nucleic Acids Res. 29, 3270 (2001) https://doi.org/10.1093/nar/29.15.3270
  21. D. M. Jacobs, A. S. Lipton, N. G. Isern, G. W. Daughdrill, D. F. Lowry, X. Gomes, and M. S. Wold, J. Biomol. NMR 14, 321(1999)
  22. C. A. Brosey, S. E. Soss, S. Brooks, C. Yan, I. Ivanov, K. Dorai, and W. J. Chazin, Struct. Des. 23, 1028 (2015) https://doi.org/10.1016/j.str.2015.04.008
  23. D. Kang, S. Lee, K.-S. Ryu, H.-K.Cheong, E.-H. Kim, and C.-J.Park, FEBS Lett. 592, 547 (2018). https://doi.org/10.1002/1873-3468.12992
  24. J.-J. Yi, W.-J. Kim, J.-K. Rhee, J. Lim, B.-J. Lee, and W.S.Son, J. Kor. Magn. Reson. Soc. 21, 26 (2017) https://doi.org/10.6564/JKMRS.2017.21.1.026
  25. S. Lee and C.-J. Park, J. Kor. Magn. Reson. Soc. 20, 138 (2016) https://doi.org/10.6564/JKMRS.2016.20.4.138
  26. O. Davulcu, Y. Peng, R. Bruschweiler, J. J. Skalicky, and M. S. Chapman, J. Struct. Biol. 200, 258 (2017) https://doi.org/10.1016/j.jsb.2017.05.002
  27. K. Berlin, A. Longhini, T. K. Dayie, and D. Fushman, J. Biomol. NMR 57, 333 (2013) https://doi.org/10.1007/s10858-013-9791-1
  28. C. Bracken, P. a Carr, J. Cavanagh, and A. G. Palmer, J. Mol. Biol. 285, 2133 (1999) https://doi.org/10.1006/jmbi.1998.2429
  29. D. E. Woessner, J. Chem. Phys. 37, 647 (1962) https://doi.org/10.1063/1.1701390
  30. W. T. Huntress, J. Chem. Phys. 48, 3524 (1968) https://doi.org/10.1063/1.1669645
  31. P. S. Hubbard, J. Chem. Phys. 53, 985 (1970) https://doi.org/10.1063/1.1674167
  32. N. A. Farrow, O. Zhang, A. Szabo, D. A. Torchia, and L. E. Kay, J. Biomol. NMR 6, 153 (1995)
  33. J.-F. Lefevre, K. T. Dayie, J. W. Peng, and G. Wagner, Biochemistry 35, 2674 (1996)