DOI QR코드

DOI QR Code

Synchronous Carrier-based Pulse Width Modulation Switching Method for Vienna Rectifier

  • Park, Jin-Hyuk (Department of Electrical and Computer Engineering, Ajou University) ;
  • Yang, SongHee (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2017.06.30
  • 심사 : 2017.11.21
  • 발행 : 2018.03.20

초록

This paper proposes a synchronous switching technique for a Vienna rectifier that uses carrier-based pulse width modulation (CB-PWM). A three-phase Vienna rectifier, similar to a three-level T-type converter with three back-to-back switches, is used as a PWM rectifier. Conventional CB-PWM requires six independent gate signals to operate back-to-back switches. When internal switches are operated synchronously, only three independent gate signals are required, which simplifies the construction of gate driver circuits. However, with this method, total harmonic distortion of the input current is higher than that with conventional CB-PWM switching. A reactive current injection technique is proposed to improve current distortion. The performance of the proposed synchronous switching method and the effectiveness of the reactive current injection technique are verified using simulations and experiments performed with a set of Vienna rectifiers rated at 5 kW.

키워드

E1PWAX_2018_v18n2_604_f0001.png 이미지

Fig. 1. Topology of the Vienna rectifier.

E1PWAX_2018_v18n2_604_f0002.png 이미지

Fig. 2. Modulation signals for the CB-PWM.

E1PWAX_2018_v18n2_604_f0003.png 이미지

Fig. 3. Impedance angle of the Vienna rectifier.

E1PWAX_2018_v18n2_604_f0004.png 이미지

Fig. 4. Equivalent circuit of the Vienna rectifier.

E1PWAX_2018_v18n2_604_f0005.png 이미지

Fig. 5. Block diagram of the control scheme for the Viennarectifier.

E1PWAX_2018_v18n2_604_f0006.png 이미지

Fig. 6. Currents and reference voltages for CB-PWM.

E1PWAX_2018_v18n2_604_f0007.png 이미지

Fig. 7. Current flow in Region 1 with conventional CB-PWM.

E1PWAX_2018_v18n2_604_f0008.png 이미지

Fig. 8. Current flow in Region 2 with the conventional CB-PWMswitching method. (a) SW1: ON, SW2: ON (O State). (b) SW1: ON,SW2: OFF (O state).

E1PWAX_2018_v18n2_604_f0009.png 이미지

Fig. 9. Output voltages of the rectifier and correspondingswitching states in Region 2 with the conventional CB-PWMswitching method.

E1PWAX_2018_v18n2_604_f0010.png 이미지

Fig. 10. Currents and reference voltages for the synchronousCB-PWM.

E1PWAX_2018_v18n2_604_f0011.png 이미지

Fig. 11. Current flow in Region 2 with the proposed CB-PWMswitching method. (a) SW1: OFF, SW2: OFF (N State). (b) SW1:ON, SW2: ON (O state).

E1PWAX_2018_v18n2_604_f0012.png 이미지

Fig. 12. Voltage and input currents of the rectifier during DCM.

E1PWAX_2018_v18n2_604_f0013.png 이미지

Fig. 13. Output voltages of the three phases in Region 2 with theproposed CB-PWM method.

E1PWAX_2018_v18n2_604_f0014.png 이미지

Fig. 14. Phase differences depending on the impedance angle andpower factor angle.

E1PWAX_2018_v18n2_604_f0015.png 이미지

Fig. 15. Power factor based on impedance angle.

E1PWAX_2018_v18n2_604_f0016.png 이미지

Fig. 16. Simulated currents and switching signals for theconventional CB-PWM.

E1PWAX_2018_v18n2_604_f0017.png 이미지

Fig. 17. Simulated currents and switching signals for thesynchronous CB-PWM.

E1PWAX_2018_v18n2_604_f0018.png 이미지

Fig. 18. Results of simulations performed using the proposedalgorithm for improving current distortion.

E1PWAX_2018_v18n2_604_f0019.png 이미지

Fig. 19. Performance of the proposed method under distortedvoltage. (a) 5th: 3%, 7th: 2%. (b) 5th: 5%, 7th: 3%.

E1PWAX_2018_v18n2_604_f0020.png 이미지

Fig. 20. Prototype of a Vienna rectifier used in the experiments.

E1PWAX_2018_v18n2_604_f0021.png 이미지

Fig. 21. Experiment results in the rated load condition. (a)Conventional CB-PWM. (b) Proposed synchronous CB-PWM. (c)Proposed synchronous CB-PWM and optimal reactive currentinjection.

E1PWAX_2018_v18n2_604_f0022.png 이미지

Fig. 22. Experiment results in 1 kW load condition. (a)Conventional CB-PWM. (b) Proposed synchronous CB-PWM. (c)Proposed synchronous CB-PWM and optimal reactive currentinjection.

E1PWAX_2018_v18n2_604_f0023.png 이미지

Fig. 23. Variation of THDi based on switching methods.

E1PWAX_2018_v18n2_604_f0024.png 이미지

Fig. 24. Variation of power factor based on switching methods.

E1PWAX_2018_v18n2_604_f0025.png 이미지

Fig. 25. Efficiency according to switching methods.

TABLE I SI BASE POSSIBLE WITCHING STATES IN DCM

E1PWAX_2018_v18n2_604_t0001.png 이미지

TABLE II SIMULATION PARAMETER

E1PWAX_2018_v18n2_604_t0002.png 이미지

참고문헌

  1. J. S. Park, M. J. Kim, H. S. Jeong, J. H. Kim, and S. W. Choi, "Development of 50kW high efficiency modular fast charger with wide charging voltage range," Trans. Korean Inst. Power Electron., Vol. 21, No. 3, pp. 267-274, Jun. 2016. https://doi.org/10.6113/TKPE.2016.21.3.267
  2. A. Ansari, P, Cheng, and H.-J. Kim, "A 3 kW bidirectional DC-DC converter for electric vehicles," J. Electr. Eng. Technol., Vol. 11, No. 4, pp. 860-868, Jul. 2016. https://doi.org/10.5370/JEET.2016.11.4.860
  3. S. G. Farkoush, C.-H. Kim, H.-C. Jung, S. Lee, N. T. Umpon, and S.-B. Rhee, "Power factor improvement of distribution system with EV chargers based on SMC method for SVC," J. Electr. Eng. Technol., Vol. 12, No. 4, pp. 860-868, Jul. 2017.
  4. S. Yang, J.-H, Park, and K.-B. Lee, "Current quality improvement for a Vienna rectifier with high-switching frequency," Trans. Korean Inst. Power Electron., Vol. 22, No. 2, pp. 181-184, Apr. 2017. https://doi.org/10.6113/TKPE.2017.22.2.181
  5. A. K. Yadav, P. Gaur, S. K. Jha, J. R. P. Gupta, and A. P. Mittal, "Optimal speed control of hybrid electric vehicles," J. Power Electron., Vol. 11, No. 4, pp. 393-400, Jul. 2011. https://doi.org/10.6113/JPE.2011.11.4.393
  6. A. Ghaderi, T. Umeno, Y. Amano, and S. Masaru, "A novel seamless direct torque control for electric drive vehicles," J. Power Electron., Vol. 11, No. 4, pp. 449-455, Jul. 2011. https://doi.org/10.6113/JPE.2011.11.4.449
  7. N. T. B. Soeiro and J. W. Kolar, "Analysis of highefficiency three-phase two- and three-level unidirectional hybrid rectifiers," IEEE Trans. Ind. Electron., Vol. 60, No. 9, pp. 3589-3601, Sep. 2013. https://doi.org/10.1109/TIE.2012.2205358
  8. M. S. Ortmann, S. A. Mussa, and M. L. Heldwein, "Three-phase multilevel PFC rectifier based on multistate switching cells," IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 1843-1854, Apr. 2015. https://doi.org/10.1109/TPEL.2014.2326055
  9. T. Friedli, M. Hartmann, and J. W. Kolar, "The essence of three-phase PFC rectifier systems - Part II," IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 543-560, Feb. 2014. https://doi.org/10.1109/TPEL.2013.2258472
  10. A. Rajaei, M. Mohamadian, and A. Y. Varjani, "Viennarectifier- based direct torque control of PMSG for wind energy application," IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2919-2929, Jul. 2013. https://doi.org/10.1109/TIE.2012.2227905
  11. H. Chen and D. C. Aliprantis, "Analysis of squirrel-cage induction generator with VIENNA rectifier for wind energy conversion system," IEEE Trans. Energy Convers., Vol. 26, No. 3, pp. 967-975, Sep. 2011. https://doi.org/10.1109/TEC.2011.2143414
  12. J.-S. Lee, E. S. Lee, and K.-B. Lee, "Hybrid parallel three-level converter topology for large wind turbine generation systems," in Proc, ISIE, pp. 515-520, 2014.
  13. B. Kedjar, H. Y. Kanaan, and K. A. Haddad, "Vienna rectifier with power quality added function," IEEE Trans. Ind. Electron., Vol. 61, No. 8, pp. 3847-3856, Aug. 2014. https://doi.org/10.1109/TIE.2013.2286577
  14. J. Adhikari, P. IV, and S. K. Panda, "Reduction of input current harmonic distortions and balancing of output voltages of the Vienna rectifier under supply voltage disturbances," IEEE Trans. Power Electron., Vol. 32, No. 7, pp. 5802-5812, Jul. 2017. https://doi.org/10.1109/TPEL.2016.2611059
  15. L. Hang, H. Zhang, S. Liu, X. Xie, C. Zhao, and S. Liu, "A novel control strategy based on natural frame for Viennatype rectifier under light unbalanced-grid conditions," IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp. 1353-1362, Mar. 2015. https://doi.org/10.1109/TIE.2014.2364792
  16. J.-S. Lee and K.-B. Lee, "A novel carrier-based PWM method for vienna rectifier with a variable power factor," IEEE Trans. Ind. Electron., Vol. 63, No.1, pp. 3-12, Jan. 2016. https://doi.org/10.1109/TED.2016.2623267
  17. A. Rajaei, M. Mohamadian, and A. Y. Varjani, "Viennarectifier- based direct torque control of PMSG for wind energy application," IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2919-2929, Jul. 2013. https://doi.org/10.1109/TIE.2012.2227905
  18. M. Leibl, J. W. Kolar, and J. Deuringer, "Sinusoidal input current discontinuous conduction mode control of the Vienna rectifier," IEEE Trans. Power Electron., Vol. 32, No. 11, pp. 8800-8812, Nov. 2017. https://doi.org/10.1109/TPEL.2016.2641502
  19. J.-S. Lee and K.-B. Lee, "Carrier-based discontinuous PWM method for vienna rectifiers," IEEE Trans. Power Electron., Vol. 30, No. 6, pp. 2896-2900, Jun. 2015. https://doi.org/10.1109/TPEL.2014.2365014
  20. J.-S. Lee and K.-B. Lee, "Performance analysis of carrierbased discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance," IEEE Trans. Power Electron., Vol. 31, No. 6, pp. 4075-4084, Jun. 2016. https://doi.org/10.1109/TPEL.2015.2477828
  21. P. Ide, F. Schafmeister, N. Fröhleke and H. Grotstollen, "Enhanced control scheme for three-phase three-level rectifier at partial load," IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 719-726, Jun. 2005. https://doi.org/10.1109/TIE.2005.843959
  22. S. Yang, J.-H, Park, and K.-B. Lee, "A carrier-based PWM with synchronous switching technique for a Vienna rectifier," in Proc. PECON, pp. 728-733, 2016.