Acknowledgement
Supported by : Scientific and Technological Research Council of Turkey (TUBITAK)
References
- Aghazadeh, R., Cigeroglu, E. and Dag, S. (2014), "Static and free vibration analyses of small-scale functionally graded beams possessing a variable length scale parameter using different beam theories", Eur. J. Mech. A. Sol., 46, 1-11.
- Aifantis, E.C. (1999), "Strain gradient interpretation of size effects", J. Fract., 95(1-4), 299-314. https://doi.org/10.1023/A:1018625006804
- Akgoz, B. and Civalek, O. (2013), "Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory", Meccan., 48(4), 863-873. https://doi.org/10.1007/s11012-012-9639-x
- Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mech., 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4
- Alipour Ghassabi, A., Dag, S. and Cigeroglu, E. (2017), "Free vibration analysis of functionally graded rectangular nano-plates considering spatial variation of the nonlocal parameter", Arch. Mech., 69(2), 105-103.
- Andrew, W.M. and Jonathan, S.C. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15(5), 1060. https://doi.org/10.1088/0960-1317/15/5/024
- Ansari, R., Faghih Shojaei, M., Mohammadi, V., Bazdid-Vahdati, M. and Rouhi, H. (2015), "Triangular mindlin microplate element", Comput. Meth. Appl. Mech. Eng., 295, 56-76. https://doi.org/10.1016/j.cma.2015.06.004
- Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Darabi, M.A. (2013), "Thermal buckling analysis of a mindlin rectangular FGM microplate based on the strain gradient theory", J. Therm. Stress., 36(5), 446-465. https://doi.org/10.1080/01495739.2013.770657
- Asghari, M. (2012), "Geometrically nonlinear micro-plate formulation based on the modified couple stress theory", J. Eng. Sci., 51, 292-309. https://doi.org/10.1016/j.ijengsci.2011.08.013
- Bellman, R.E. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34, 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eshraghi, I., Dag, S. and Soltani, N. (2015), "Consideration of spatial variation of the length scale parameter in static and dynamic analyses of functionally graded annular and circular micro-plates", Compos. Part B, 78, 338-348. https://doi.org/10.1016/j.compositesb.2015.03.095
- Eshraghi, I., Dag, S. and Soltani, N. (2016), "Bending and free vibrations of functionally graded annular and circular microplates under thermal loading", Compos. Struct., 137, 196-207. https://doi.org/10.1016/j.compstruct.2015.11.024
- Farahmand , H., Mohammadi, M., Iranmanesh, A. and Naseralavi, S.S. (2015), "Exact solution for free vibration analysis of functionally graded microplates based on the strain gradient theory", J. Multisc. Comput. Eng., 13(6), 463-474. https://doi.org/10.1615/IntJMultCompEng.2015014164
- Farokhi, H. and Ghayesh, M.H. (2015), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002
- Farokhi, H. and Ghayesh, M.H. (2016), "Nonlinear size-dependent dynamics of an imperfect shear deformable microplate", J. Sound Vibr., 361, 226-242. https://doi.org/10.1016/j.jsv.2015.09.025
- Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
- Gholami, R. and Ansari, R. (2016), "A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates", Nonlin. Dyn., 84(4), 2403-2422. https://doi.org/10.1007/s11071-016-2653-0
- Gurtin, M.E., Weissmuller, J. and Larche, F. (1998), "The general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 178, 1093-1109.
- Hassanin, H. and Jiang, K. (2014), "Net shape manufacturing of ceramic micro parts with tailored graded layers", J. Micromech. Microeng., 24(1), 015018. https://doi.org/10.1088/0960-1317/24/1/015018
- Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011), "The sizedependent vibration analysis of micro-plates based on a modified couple stress theory", Phys. E, 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005
- Kahrobaiyan, M.H., Rahaeifard, M., Tajalli, S.A. and Ahmadian, M.T. (2012), "A strain gradient functionally graded eulerbernoulli beam formulation", J. Eng. Sci., 52, 65-76. https://doi.org/10.1016/j.ijengsci.2011.11.010
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Free vibration of size-dependent mindlin microplates based on the modified couple stress theory", J. Sound Vibr., 331(1), 94-106. https://doi.org/10.1016/j.jsv.2011.08.020
- Kim, J. and Reddy, J.N. (2013), "Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stressbased third-order theory", Compos. Struct., 103, 86-98. https://doi.org/10.1016/j.compstruct.2013.03.007
- Kim, J. and Reddy, J.N. (2015), "A general third-order theory of functionally graded plates with modified couple stress effect and the von Karman nonlinearity: Theory and finite element analysis", Acta Mech., 226(9), 2973-2998. https://doi.org/10.1007/s00707-015-1370-y
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Sol., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lazopoulos, K.A. (2009), "On bending of strain gradient elastic micro-plates", Mech. Res. Commun., 36(7), 777-783. https://doi.org/10.1016/j.mechrescom.2009.05.005
- Lou, J. and He, L. (2015), "Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory", Compos. Struct., 131, 810-820. https://doi.org/10.1016/j.compstruct.2015.06.031
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta Mech., 220(1-4), 217-235. https://doi.org/10.1007/s00707-011-0480-4
- Mahmoud, F.F. and Shaat, M. (2015), "A new Mindlin FG plate model incorporating microstructure and surface energy effects", Struct. Eng. Mech., 53(1), 105-130. https://doi.org/10.12989/sem.2015.53.1.105
- Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Exp. Mech., 3(1), 1-7. https://doi.org/10.1007/BF02327219
- Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", J. Sol. Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couplestresses in linear elasticity", Arch. Rat. Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016), "Modified strain gradient reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FGSWNT", Compos. Part B, 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
- Ng, C.H.W., Zhao, Y.B., Xiang, Y. and Wei, G.W. (2009), "On the accuracy and stability of a variety of differential quadrature formulations for the vibration analysis of beams", J. Eng. Appl. Sci., 1, 1-25.
- Nikolov, S., Han, C.S. and Raabe, D. (2007), "On the origin of size effects in small-strain elasticity of solid polymers", J. Sol. Struct., 44(5), 1582-1592. https://doi.org/10.1016/j.ijsolstr.2006.06.039
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015
- Ramezani, S. (2012), "A shear deformation micro-plate model based on the most general form of strain gradient elasticity", J. Mech. Sci., 57(1), 34-42. https://doi.org/10.1016/j.ijmecsci.2012.01.012
- Reddy, J.N. and Kim, J. (2012), "A nonlinear modified couple stress-based third-order theory of functionally graded plates", Compos. Struct., 94(3), 1128-1143. https://doi.org/10.1016/j.compstruct.2011.10.006
- Sahmani, S. and Ansari, R. (2013), "On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory", Compos. Struct., 95, 430-442. https://doi.org/10.1016/j.compstruct.2012.07.025
- Salehipour, H., Nahvi, H. and Shahidi, A.R. (2015), "Exact closedform free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories", Compos. Struct., 124, 283-291. https://doi.org/10.1016/j.compstruct.2015.01.015
- Setoodeh, A. and Rezaei, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209
- Shenas, A.G. and Malekzadeh, P. (2016), "Free vibration of functionally graded quadrilateral microplates in thermal environment", Thin Wall. Struct., 106, 294-315. https://doi.org/10.1016/j.tws.2016.05.001
- Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer, London, U.K.
- Simsek, M., Aydin, M., Yurtcu, H.H. and Reddy, J.N. (2015), "Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory", Acta Mech., 226(11), 3807-3822. https://doi.org/10.1007/s00707-015-1437-9
- Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Mater., 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
- Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded kirchhoff and mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023
- Thai, H.T. and Kim, S.E. (2013), "A size-dependent functionally graded Reddy plate model based on a modified couple stress theory", Compos. Part B, 45(1), 1636-1645. https://doi.org/10.1016/j.compositesb.2012.09.065
- Thai, H.T. and Vo, T.P. (2013), "A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory", Compos. Struct., 96, 376-383. https://doi.org/10.1016/j.compstruct.2012.09.025
- Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Rat. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945
- Tsiatas, G.C. (2009), "A new kirchhoff plate model based on a modified couple stress theory", J. Sol. Struct., 46(13), 2757-2764. https://doi.org/10.1016/j.ijsolstr.2009.03.004
- Wang, B., Zhou, S., Zhao, J. and Chen, X. (2011), "A sizedependent kirchhoff micro-plate model based on strain gradient elasticity theory", Eur. J. Mech. A. Sol., 30(4), 517-524. https://doi.org/10.1016/j.euromechsol.2011.04.001
- Wang, Y.G., Lin, W.H. and Liu, N. (2013), "Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory", J. Mech. Sci., 71, 51-57. https://doi.org/10.1016/j.ijmecsci.2013.03.008
- Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", Mater. Sci. For., 492-493, 255-260.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", J. Sol. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Yin, L., Qian, Q., Wang, L. and Xia, W. (2010), "Vibration analysis of microscale plates based on modified couple stress theory", Acta Mech. Sol. Sin., 23(5), 386-393. https://doi.org/10.1016/S0894-9166(10)60040-7
- Zhong, Z.Y., Zhang, W.M., Meng, G. and Wang, M.Y. (2015), "Thermoelastic damping in the size-dependent microplate resonators based on modified couple stress theory", J. Microelectr. Syst., 24(2), 431-445. https://doi.org/10.1109/JMEMS.2014.2332757
Cited by
- Buckling treatment of piezoelectric functionally graded graphene platelets micro plates vol.38, pp.3, 2021, https://doi.org/10.12989/scs.2021.38.3.337