DOI QR코드

DOI QR Code

키넥트 깊이 정보와 컨볼루션 신경망을 이용한 개별 돼지의 탐지

Individual Pig Detection Using Kinect Depth Information and Convolutional Neural Network

  • 이준희 (고려대학교 컴퓨터융합소프트웨어학과) ;
  • 이종욱 (고려대학교 컴퓨터융합소프트웨어학과) ;
  • 박대희 (고려대학교 컴퓨터융합소프트웨어학과) ;
  • 정용화 (고려대학교 컴퓨터융합소프트웨어학과)
  • 투고 : 2017.10.17
  • 심사 : 2018.02.02
  • 발행 : 2018.02.28

초록

혼잡한 돈방에서 사육되는 이유자돈들의 공격적인 이상행동들은 축산농가의 경제적 손실을 야기할 뿐만 아니라 동물복지입장에서도 바람직하지 않다. 이러한 문제점의 해결책으로, 최근 IT기반의 연구들이 소개되고 있으나 혼잡한 돈방에서의 돼지 객체 탐지는 여전히 도전적인 문제로 알려져 있다. 본 논문에서는 개별 돼지의 탐지를 위한 키넥트 카메라와 딥러닝 기반의 새로운 모니터링 시스템을 제안한다. 제안된 시스템은 다음과 같다. 1) 키넥트 카메라로부터 취득한 깊이 영상에서 배경 차영상 기법과 깊이 임계값을 이용하여 서있는 돼지만을 탐지한다, 2) 딥러닝 알고리즘 중 최근 가장 빠르고 높은 정확도를 보이는 YOLO(You Only Look Once)를 이용하여 서있는 돼지들을 탐지한다. 본 연구의 실험 결과에 의하면, 제안된 시스템은 경제적인 비용(저가의 키넥트 센서)과 시스템 정확도(평균 99.40% 객체 검출율과 탐지 정확도)로 개별 돼지 객체들을 실시간으로 탐지할 수 있음을 실험적으로 확인하였다.

Aggression among pigs adversely affects economic returns and animal welfare in intensive pigsties. Recently, some studies have applied information technology to a livestock management system to minimize the damage resulting from such anomalies. Nonetheless, detecting each pig in a crowed pigsty is still challenging problem. In this paper, we propose a new Kinect camera and deep learning-based monitoring system for the detection of the individual pigs. The proposed system is characterized as follows. 1) The background subtraction method and depth-threshold are used to detect only standing-pigs in the Kinect-depth image. 2) The standing-pigs are detected by using YOLO (You Only Look Once) which is the fastest and most accurate model in deep learning algorithms. Our experimental results show that this method is effective for detecting individual pigs in real time in terms of both cost-effectiveness (using a low-cost Kinect depth sensor) and accuracy (average 99.40% detection accuracies).

키워드

참고문헌

  1. I. Camerlink, S. P. Turner, W. W. Ursinus, I. Reimert, and J. E. Bolhuis, "Aggression and Affiliation during Social Conflict in Pigs," PLoS ONE, Vol.9, p.e113502, 2014. https://doi.org/10.1371/journal.pone.0113502
  2. X. Zheng, Y. Zhao, N. Li, and H. Wu, "An Automatic Moving Object Detection Algorithm for Video Surveillance Applications," Proceeding of International Conference on Embedded Software Systems, pp.541-543, 2009.
  3. S. Zuo, L. Jin, Y. Chung, and D. Park, "An Index Algorithm for Tracking Pigs in Pigsty," Proceedings of the International Conference on Information Technology and Management Science, pp.797-803, 2014.
  4. M. Ju, H. Baek, J. Sa, H. Kim, Y. Chung, and D. Park, "Real-Time Pig Segmentation for Individual Pig Monitoring in a Weaning Pig Room," Journal of Korea Multimedia Society, Vol.19, No.2, pp.215-223, 2016. https://doi.org/10.9717/kmms.2016.19.2.215
  5. H. Baek, Y. Chung, M. Ju, Y. Chung, D. Park, and H. Kim, "Pig Segmentation using Concave-Points and Edge Information," Journal of Korea Multimedia Society, Vol.19, No.8, pp.1361-1370, 2016. https://doi.org/10.9717/kmms.2016.19.8.1361
  6. J. Lee, L. Jin, D. Park, and Y. Chung, "Automatic Recognition of Aggressive Behavior in Pigs using a Kinect Depth Sensor," Sensors, Vol.16, No.5, pp.631-641, 2016. https://doi.org/10.3390/s16050631
  7. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet Classification with Deep Convolutional Neural Networks," Advances in Neural Information Processing Systems, pp.1097-1105, 2012.
  8. R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based Convolutional Networks for Accurate Object Detection and Segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.142-158, 2016.
  9. K. He, X. Zhang, S. Ren, and J. Sun, "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition," European Conference on Computer Vision, pp.346-361, 2014.
  10. R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.580-587, 2014.
  11. S. Gidaris and N. Komodakis, "Object Detection via a Multi-Region and Semantic Segmentation-Aware CNN Model," Proceedings of the IEEE International Conference on Computer Vision, pp.1134-1142, 2015.
  12. A. Nasirahmadi, O. Hensel, S. A. Edwards, and B. Sturm, "Automatic Detection of Mounting Behaviours among Pigs using Image Analysis," Computers and Electronics in Agriculture, Vol.124, pp.295-302, 2016. https://doi.org/10.1016/j.compag.2016.04.022
  13. Y. Guo, W. Zhu, P. Jiao, and J. Chen, "Foreground Detection of Group-Housed Pigs based on the Combination of Mixture of Gaussians using Prediction Mechanism and Threshold Segmentation," Biosystems Engineering, Vol.125, pp.98-104, 2014. https://doi.org/10.1016/j.biosystemseng.2014.07.002
  14. M. A. Kashiha, C. Bahr, S. Ott, C. P. Moons, T. A. Niewold, F. Tuyttens, and D. Berckmans, "Automatic Monitoring of Pig Locomotion using Image Analysis," Li vestock Science, Vol.159, pp.141-148, 2014. https://doi.org/10.1016/j.livsci.2013.11.007
  15. L. Xia and J. K. Aggarwal, "Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2013), pp.2834-2841, 2013.
  16. 윤영지, 진성일, "Kinect 디바이스에서 피부색과 깊이 정보를 융합한 여러 명의 얼굴 검출 알고리즘," 한국콘텐츠학회논문지, 제17권, 제1호, pp.137-144, 2017. https://doi.org/10.5392/JKCA.2017.17.01.137
  17. 류가애, 장호욱, 김유성, 류관희, "깊이와 칼라 영상의 특징을 사용한 ROI 기반 객체 추출," 한국콘텐츠학회논문지, 제16권, 제8호, pp.395-403, 2016. https://doi.org/10.5392/JKCA.2016.16.08.395
  18. D. Lee, S. Yoon, J. Lee, and D. S. Park, "Real-Time License Plate Detection Based on Faster R-CNN," KIPS Transactions on Software and Data Engineering, Vol.5, No.11, pp.511-520, 2016. https://doi.org/10.3745/KTSDE.2016.5.11.511
  19. C. Szegedy, W. Liu, Y. Jia, S. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going Deeper with Convolutions," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1-9, 2015.
  20. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.779-788, 2016.
  21. M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, "The Pascal Visual Object Classes Challenge: A Retrospective," International Journal of Computer Vision, Vol.111, No.1, pp.98-136, 2015. https://doi.org/10.1007/s11263-014-0733-5
  22. 고광은, 심귀보, "딥러닝 모델을 이용한 실시간 객체 검출 기반 어포던스 특징 추출 시스템," 제어로봇시스템학회논문지, 제23권, 제8호, pp.619-624, 2017.
  23. J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques, Third Edition, Morgan Kaufmann Publishers, 2012.
  24. Y. Z. Guo, W. X. Zhu, P. P. Jiao, C. H. Ma, and J. J. Yang, "Multi-Object Extraction from Topview Group-Housed Pig Images based on Adaptive Partitioning and Multilevel Thresholding Segmentation," Biosystems Engineering, Vol.135, pp.54-60, 2015. https://doi.org/10.1016/j.biosystemseng.2015.05.001
  25. 최장민, 이종욱, 정용화, 박대희, "고속 영역기반 컨볼루션 신경망을 이용한 개별 돼지의 탐지," 한국멀티미디어학회논문지, 제20권, 제2호, pp.216-224, 2017. https://doi.org/10.9717/kmms.2017.20.2.216
  26. Q. Zhu, J. Ren, D. Barclay, S. McCormack, and W. Thomson, "Automatic animal detection from kinect sensed images for livestock monitoring and assessment," Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing( CIT/IUCC/DASC/PICOM) , pp.1154-1157, 2015.
  27. 최장민, 이종욱, 정용화, 박대희, "키넥트 깊이 정보를 이용한 개별 돼지의 탐지," 정보처리학회논문지, 제5권, 제10호, pp.319-326, 2016. https://doi.org/10.3745/KTCCS.2016.5.10.319