DOI QR코드

DOI QR Code

A Bone Region Extraction Method based on Snake Algorithm and Particle Filter in CT image

CT 영상에서 스네이크 알고리즘과 파티클 필터를 이용한 뼈 영역 추출 방법

  • Jung, Sung-Tae (Department of Computer and Software Engineering, Wonkwang University) ;
  • Kim, Young-Un (Good Information Technologies Co.,Ltd.) ;
  • Kang, Sun-Kyoung (Department of Computer and Software Engineering, Wonkwang University)
  • Received : 2017.10.21
  • Accepted : 2017.11.14
  • Published : 2018.02.28

Abstract

In this paper, we propose a bone region extraction method using a snake algorithm and a particle filter in CT image. We extract the bone outline using the snake algorithm, and extract the bone area by moving the particle filter along this outline. If other bones are in close proximity to the bone outline, the snake algorithm may not be able to extract the bone outline completely. At this time, the particle filter extracts the bone area while compensating for the error. In this paper, we compared the proposed method with the conventional morphological processing method. The result is similar when other bones are not close to the bone area to be extracted. However, if other bones are close to each other, The accuracy of the proposed method is higher than the conventional morphological processing method.

본 논문에서는 CT 영상에서 스네이크 알고리즘과 파티클 필터를 이용한 뼈 영역 추출 방법을 제안한다. 스네이크 알고리즘을 이용하여 뼈 외곽선을 추출하고, 이 외곽선을 따라서 파티클 필터를 움직여 가면서 뼈 영역을 추출한다. 뼈 외곽선 주위에 다른 뼈가 근접해 있는 경우에 스네이크 알고리즘이 뼈 외곽선을 완벽하게 추출하지 못할 수 있는데, 이때에 파티클 필터가 이러한 오류를 보완해가면서 뼈 영역을 추출한다. 본 논문에서 제안한 방법을 기존의 형태학적 처리를 이용한 방법과 비교한 결과, 추출하고자 하는 뼈 영역 주위에 다른 뼈가 근접해 있지 않은 경우에는 비슷한 결과를 보였지만, 다른 뼈가 근접해 있는 경우에는 본 논문에서 제안한 방법의 정확도가 높음을 알 수 있었다.

Keywords

References

  1. M.L. Bouxsein, S.K. Boyd, B.A. Christiansen, R.E. Guldberg, K.J Jepsen, and R. Muller, "Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography," Journal of Bone and Mineral Research, vol. 25, no. 7, pp. 1468-1486, Jul. 2010. https://doi.org/10.1002/jbmr.141
  2. M. Baiker, T. Snoeks, E.L. Kaijzel, I. Que, J. Dijkstra, B. Lelieveldt, and C. Lowik, "Automated Bone Volume and Thickness Measurements in Small Animal Whole-Body Micro-CT Data," Molecular Imaging and Biology, vol. 14, no. 4, pp. 420-430, Aug. 2012. https://doi.org/10.1007/s11307-011-0522-2
  3. A. Behrooz, P. Kask, J. Meganck, and J. Kempner, "Automated Quantitative Bone Analysis in In Vivo X-ray Micro-Computed Tomography," IEEE Transactions on Medical Imaging, vol. 36, no. 9, pp. 1955-1965, Sep. 2017. https://doi.org/10.1109/TMI.2017.2712571
  4. H.R. Buie, G.M. Campbell, R. Joshua Klinck, J.A. MacNeil, and S.K. Boyd, "Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis," Bone, vol. 41, pp. 505-515, Jul. 2007. https://doi.org/10.1016/j.bone.2007.07.007
  5. J. Zhang, C.-H. Yan, C.-K. Chui, and S.-H. Ong, "Fast segmentation of bone in CT images using 3D adaptive thresholding," Computers in Biology and Medicine, vol. 40, no. 2, pp. 231-236, Feb. 2010. https://doi.org/10.1016/j.compbiomed.2009.11.020
  6. S.-K. Kang, Y.-U. Kim, and S.-T. Jung, "Automatic Segmentation of Trabecular Bone Based on Sphere Fitting for Micro-CT Bone Analysis," KIPS Transactions on Software and Data Engineering., vol. 3, no. 8, pp. 329-334, Aug. 2014. https://doi.org/10.3745/KTSDE.2014.3.8.329
  7. Y.L. Fok, J.C.K. Chan, and R.T. Chin, "Automated analysis of nerve cell images using active contour models," IEEE Transactions on Medical Image, vol. 15, no. 3, pp. 353-368, Jun. 1996. https://doi.org/10.1109/42.500144
  8. C.-S. Kim and S.-Y. Choi, "Image Segmentation of Lung Parenchyma using Improved Deformable Model on Chest Computed Tomography," Journal of the Korea Institute of Information and Communication Engineering, vol. 13, no. 10, pp. 2163-2170, Oct. 2009.
  9. J. Yan, K. Zhang, C. Zhang, S.-C. Chen, and G. Narasimhan, "Automatic Construction of 3-D Building Model From Airborne LIDAR Data Through 2-D Snake Algorithm," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 1, pp. 3-14, Jan. 2015. https://doi.org/10.1109/TGRS.2014.2312393
  10. M.S. Johannes, N.G. Polson, and J.R. Stroud, "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," Review of Financial Studies, vol. 22, no. 7, pp. 2759-2799, Jul. 2009. https://doi.org/10.1093/rfs/hhn110
  11. S.-M. Shin, S. Uroosa, "Predicting Software Reliability Using Particle SWARM Optimization Technique", Asia-pacific Journal of Convergent Research Interchange, vol.1, no.3, pp. 17-30, Sep. 2015.
  12. T.-G. Kim, N.-Y. Ko, and S.-W. Noh, "Simultaneous Estimation of Landmark Location and Robot Pose Using Particle Filter Method," Journal of Korean Institute of Intelligent Systems, vol. 22, no. 3, pp. 353-360, Jun. 2012. https://doi.org/10.5391/JKIIS.2012.22.3.353
  13. E.-M. Choi, H.-K. Oh, and I.-C. Kim, "Simultaneous Localization and WiFi Fingerprint Mapping Based on Particle Filters," KIISE Transactions on Software and Application, vol. 40, no. 4, pp. 211-219, Apr. 2013.
  14. S.-G. Sun and B.-L. Cho, "Small Target Detection in Infrared Images Using Particle Filter Track-Before-Detection," Journal of Korean Institute of Information Technology, vol. 14, no. 9, pp. 37-43, Sep. 2016.
  15. C. Li, C. Xu, C. Gui, and M. D. Fox, "Distance Regularized Level Set Evolution and its Application to Image Segmentation," IEEE Transaction on Image Processing, vol. 19 no. 12, pp. 3243-3254, Dec. 2010. https://doi.org/10.1109/TIP.2010.2069690
  16. A.M. Johansen, "SMCTC: Sequential Monte Carlo in C++," Journal of Statistical Software, vol. 30, no. 6, pp. 1-41, Apr. 2009.
  17. D. Douglas and T. Peucker, "Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Curvature," The International Journal for Geographic and Geovisualization, vol. 10, no. 2, pp. 112-122, Dec. 1973. https://doi.org/10.3138/FM57-6770-U75U-7727