DOI QR코드

DOI QR Code

Modulation of Electroosmotic Flow through Skin: Effect of Poly(Amidoamine) Dendrimers

  • Kim, Hye Ji (College of Pharmacy, Sookmyung Women's University) ;
  • Oh, Seaung Youl (College of Pharmacy, Sookmyung Women's University)
  • Received : 2017.10.12
  • Accepted : 2017.10.19
  • Published : 2018.03.01

Abstract

The objective of this work is to evaluate the effect of polyamidoamine (PAMAM) dendrimers on electroosmotic flow (EOF) through skin. The effect of size and concentration of dendrimer was studied, using generation 1, 4 and 7 dendrimer (G1, G4 and G7, respectively). As a marker molecule for the direction and magnitude of EOF, a neutral molecule, acetoaminophen (AAP) was used. The visualization of dendrimer permeation into the current conducting pore (CCP) of skin was made using G4-fluorescein isothiocyanate (FITC) conjugate and confocal microscopy. Without dendrimer, anodal flux of AAP was much higher than cathodal or passive flux. When G1 dendrimer was added, anodal flux decreased, presumably due to the decrease in EOF by the association of G1 dendrimer with net negative charge in CCP. As the generation increased, larger decrease in anodal flux was observed, and the direction of EOF was reversed. Small amount of methanol used for the preparation of dendrimer solution also contributed to the decrease in anodal flux of AAP. Cross-sectional view perpendicular to the skin surface by confocal laser scanning microscope (CLSM) study showed that G4 dendrimer-FITC conjugate (G4-FITC) can penetrate into the viable epidermis and dermis under anodal current. The permeation route seemed to be localized on hair follicle region. These results suggest that PAMAM dendrimers can permeate into CCP and change the magnitude and direction of EOF. Overall, we obtained a better understanding on the mechanistic insights into the electroosmosis phenomena and its role on flux during iontophoresis.

Keywords

References

  1. Abla, N., Naik, A., Guy, R. H. and Kalia, Y. N. (2005) Effect of charge and molecular weight on transdermal peptide delivery by iontophoresis. Pharm. Res. 22, 2069-2078. https://doi.org/10.1007/s11095-005-8110-2
  2. Bronaugh, R. L., Stewart, R. F. and Congdon, E. R. (1982) Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. Toxicol. Appl. Pharmacol. 62, 481-488. https://doi.org/10.1016/0041-008X(82)90149-1
  3. Burnette, R. R. and Ongpipattanakul, B. (1987) Characterization of the permselective properties of excised human skin during iontophoresis. J. Pharm. Sci. 76, 765-773. https://doi.org/10.1002/jps.2600761003
  4. Chauhan, A. S., Sridevi, S., Chalasani, K. B., Jain, A. K., Jain, S. K., Jain, N. K. and Diwan, P. V. (2003) Dendrimer-mediated transdermal delivery: Enhanced bioavailability of indomethacin. J. Control. Release 90, 335-343. https://doi.org/10.1016/S0168-3659(03)00200-1
  5. Choudhary, S., Gupta, L., Rani, S., Dave, K. and Gupta, U. (2017) Impact of dendrimers on solubility of hydrophobic drug molecules. Front. Pharmacol. 8, 261. https://doi.org/10.3389/fphar.2017.00261
  6. Esfand, R. and Tomalia, D. A. (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6, 427-436. https://doi.org/10.1016/S1359-6446(01)01757-3
  7. Guy, R. H., Kalia, Y. N., Delgado-Charro, M. B., Merino, V., Lopez, A. and Marro, D. (2000) Iontophoresis: electrorepulsion and electroosmosis. J Control. Release 64, 129-132.
  8. Hirvonen, J. and Guy, R. H. (1998) Transdermal iontophoresis: modulation of electroosmosis by polypeptide. J Control. Release 50, 283-289. https://doi.org/10.1016/S0168-3659(97)00150-8
  9. Jevprasesphant, R., Penny, J., Attwood, D., McKeown, N. B. and D'Emanuele, A. (2003) Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res. 20, 1543-1550. https://doi.org/10.1023/A:1026166729873
  10. Jo, J. and Oh, S. (2010) Electrotransport of levodopa through skin: permeation at low pH. J. Pharm. Invest. 40, 23-31. https://doi.org/10.4333/KPS.2010.40.1.023
  11. Jung, E. C. and Maibach, H. I. (2015) Animal models for percutaneous absorption. J. Appl. Toxicol. 35, 1-10. https://doi.org/10.1002/jat.3004
  12. Kim, A., Green, P. G., Rao, G. and Guy, R. H. (1993) Convective solvent flow across the skin during iontophoresis. Pharm. Res. 10, 1315-1320. https://doi.org/10.1023/A:1018969713547
  13. Kubota, H., Tsuda, S., Murata, M., Yamamoto, T., Tanaka, Y. and Makita, T. (1980) Specific volume and viscosity of methanol-water mixtures under high pressure. Rev. Phys. Chem. Jpn. 49, 59-69.
  14. Lademann, J., Richter, H., Teichmann, A., Otberg, N., Blume-Peytavi, U., Luengo, J., Weiss, B., Schaefer, U. F., Lehr, C. M., Wepf, R. and Sterry, W. (2007) Nanoparticles-an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm. 66, 159-164. https://doi.org/10.1016/j.ejpb.2006.10.019
  15. Lee, J. H. and Oh, S. (2005) Current pretreatment of skin and its effect on the permeability. J. Pharm. Investig. 35, 81-87.
  16. Lee, S. Y., Jeong, N. Y. and Oh, S. (2014) Modulation of electroosmosis and flux through skin: effect of propylene glycol. Arch. Pharm. Res. 37, 484-493. https://doi.org/10.1007/s12272-013-0256-6
  17. Liu, M. and Frechet, J. M. (1999) Designing dendrimers for drug delivery. Pharm. Sci. Technol. Today 2, 393-401. https://doi.org/10.1016/S1461-5347(99)00203-5
  18. Marro, D., Guy, R. H. and Delgado-Charro, M. B. (2001) Characterization of the iontophoretic permselectivity properties of human and pig skin. J. Control. Release 70, 213-217. https://doi.org/10.1016/S0168-3659(00)00350-3
  19. Megriche, A., Belhadj, A. and Mgaidi, A. (2012) Microwave dielectric properties of binary solvent wateralcohol, alcohol-alcohol mixtures at temperatures between $-35^{\circ}C$ and $+35^{\circ}C$ and dielectric relaxation studies. Mediterr. J. Chem. 1, 200-209.
  20. Mutalik, S., Parekh, H. S., Anissimov, Y. G., Grice, J. E. and Roberts, M. S. (2013) Iontophoresis-mediated transdermal permeation of peptide dendrimers across human epidermis. Skin Pharmacol. Physiol. 26, 127-138. https://doi.org/10.1159/000348469
  21. Niu, Y., Sun, L. and Crooks, R. M. (2003) Determination of the intrinsic proton binding constants for poly(amidoamine) dendrimers via potentiometric pH titration. Macromolecules 36, 5725-5731. https://doi.org/10.1021/ma034276d
  22. Pamukcu, S. and Wittle, J. K. (1992) Electrokinetic removal of selected heavy metals from soil. Environ. Prog. 11, 241-250. https://doi.org/10.1002/ep.670110323
  23. Pikal, M. J. (2001) The role of electroosmotic flow in transdermal iontophoresis. Adv. Drug Deliv. Rev. 46, 281-305. https://doi.org/10.1016/S0169-409X(00)00138-1
  24. Scott, E. R., White, H. S. and Phipps, J. B. (1992) Direct imaging of ionic pathways in stratum corneum using scanning electrochemical microscopy. Solid State Ion. 53-56, 176-183. https://doi.org/10.1016/0167-2738(92)90380-8
  25. Scott, E. R., Phipps, J. B. and White, H. S. (1995) Direct imaging of molecular transport through skin. J. Invest. Dermatol. 104, 142-145. https://doi.org/10.1111/1523-1747.ep12613661
  26. Sharma, A., Rao, M., Miller, R. and Desai, A. (2005) Fluorometric assay for detection and quantitation of polyamidoamine dendrimers. Anal. Biochem. 344, 70-75. https://doi.org/10.1016/j.ab.2005.06.025
  27. Sun, M., Fan, A., Wang, Z. and Zhao, Y. (2012) Dendrimer-mediated drug delivery to the skin. Soft Matter 8, 4301-4305. https://doi.org/10.1039/c2sm07280g
  28. Tripathy, W. and Das, M. K. (2013) Dendrimers and their applications as novel drug delivery carriers. J. Appl. Pharm. Sci. 3, 142-149.
  29. Turner, N. G., Ferry, L., Price, M., Cullander, C. and Guy, R. H. (1997) Iontophoresis of poly-L-lysines: the role of molecular weight? Pharm. Res. 14, 1322-1331. https://doi.org/10.1023/A:1012100100865
  30. Venuganti, V. K. and Perumal, O. P. (2008) Effect of poly(amidoamine) (PAMAM) dendrimer on skin permeation of 5-fluorouracil. Int. J. Pharm. 361, 230-238. https://doi.org/10.1016/j.ijpharm.2008.05.034
  31. Venuganti, V. K. and Perumal, O. P. (2009) Poly(amidoamine) dendrimers as skin penetration enhancers: Influence of charge, generation, and concentration. J. Pharm. Sci. 98, 2345-2356.
  32. Venuganti, V. V., Sahdev, P., Hildreth, M., Guan, X. and Perumal, O. (2011) Structure-skin permeability relationship of dendrimers. Pharm. Res. 28, 2246-2260. https://doi.org/10.1007/s11095-011-0455-0
  33. Yamashita, N., Tachibana, K., Ogawa, K., Tsujita, N. and Tomita, A. (1997) Scanning electron microscopic evaluation of the skin surface after ultrasound exposure. Anat. Rec. 247, 455-461. https://doi.org/10.1002/(SICI)1097-0185(199704)247:4<455::AID-AR3>3.0.CO;2-Q
  34. Zhu, J. and Shi, X. (2013) Dendrimer-based nanodevices for targeted drug delivery applications. J. Matater. Chem. B. 34, 4199-4211.

Cited by

  1. Electroosmosis in human dentine in vitro vol.119, pp.None, 2020, https://doi.org/10.1016/j.archoralbio.2020.104885