Abstract
Line-laser beams are used for depth measurement of welding beads along the circumference of a pipe. For this, first we project a line-laser beam on an rotating pipe and take a sequence of images of the beam projected on the pipe using a CCD camera. Second, the projected line laser beam in each image is detected, converted into a thin curve. Finally measure the distance between the thinned curve and an imaginary line. When a line-laser beam is projected to a rough metal surface such as arc welding beads, the beam is severely scattered. This severe scattering makes the thinned curve perturbed. In this paper, we propose a thinning method robust against scattering of line lasers. First, we extract a projected line laser beam region using an adaptive threshold. Second, we model a thinned curve with a spline curve with control points. Next, we adjust the control points to fit the curve to the projected line-laser beam. Finally, we take a weighted mean of thin curves on a sequence of image frames. Experiments shows that the proposed thinning method results in a thinning curve, which is smooth and fit to the projected line-laser beam with small error.