DOI QR코드

DOI QR Code

A History of Taylor's Theorem and Its Teaching Strategy

Taylor 정리의 역사적 고찰과 교수방안

  • Received : 2017.12.06
  • Accepted : 2018.02.10
  • Published : 2018.02.28

Abstract

Taylor's Theorem is an important theorem which is applied to several disciplines. It is usually taught in a college-level calculus course for the first time. Many students have a hard time to understand or to make applications. In this paper, we look into the history of the development of Taylor's theorem and consider a teaching strategy of the theorem.

Keywords

References

  1. BRITANICA, James Gregory, https://www.britannica.com/biography/James-Gregory#ref174577.
  2. Ian BRUCE, Brook Taylor: Methodus Incrementorum Directa & Inversa, Part I (translated with notes), 1715. http://17centurymaths.com/contents/brooktaylor/methodofincrementspartone.pdf.
  3. Ian BRUCE, Brook Taylor: Methodus Incrementorum Directa & Inversa, Part II (translated with notes), 1715. http://17centurymaths.com/contents/brooktaylor/methodofincrementsparttwo.pdf.
  4. Hugh CHISHOLM, editor in chief, "Taylor, Brook" Encyclop$\ae$dia Britannica, 11th ed. 26. Cambridge University Press, 1911.
  5. CHUNG Young Woo, LEE Mok Hwa, KIM Boo Yoon, A study on the pedagogical consideration of the related knowledge for teaching 'Approximation' conception, Korean Society of Mathematical Education, Communications of Mathematical Education 26(1) (2012), 137-154. 정영우, 이목화, 김부윤, 근사개념 지도를 위한 관련 지식의 교수학적 고찰, 한국수학교육학회지 시리즈E: 수학교육논문집 26(1) (2012), 137-154.
  6. C. H. EDWARDS, JR, David E. PENNY, Calculus with Analytic Geometry, 4th ed. Prentice Hall, 1994.
  7. Ross L. FINNEY, Maurice D. WEIR, Frank R. GIORDANO, George B. THOMAS, JR, Thomas' Calculus, 10th ed, Addison Wesley, 2003.
  8. Duncan C. FRASER, Newton's interpolation formulas, Journal of the Institutes of Actuaries, vol. il (1918), 77-106.
  9. hilip W. GOETZ, editor in chiet, "James Gregory," The New Encyclopedia Britanica, 15th ed., Micropedia Ready Reference 5, Encyclopedia Britanica Inc., 1991.
  10. Jeremy GRAY, The Real and the Complex: A History of Analysis in 19th Century, Springer, 2015.
  11. Deborah HUGHES-HALLETT, Andrew M. GLEASON, et al. Calculus: Single and Multivariable, 4th ed., John Wiley & Sons, 2005.
  12. Abdelwahab KHARAB, Ronald B. GUENTHER, An Introduction to Numerical Methods: A MATLAB Approach, 3rd ed, CRC Press, 2011.
  13. KIM Jin Hwan, Exploring Teaching Way Using GeoGebra Based on Pre-Service Secondary Teachers' Understanding-Realities for Taylor Series Convergence Conceptions, Journal of Korea Society Educational Studies in Mathematics 16(2) (2014), 317-334. 김진환, Taylor 급수 수렴에 대한 예비중등교사의 이해실태와 GeoGebra를 활용한 교수방안 탐색, 대한수학교육학회, 학교수학 16(2) (2014), 317-334.
  14. KOH Youngmee, REE Sangwook, The Origin of Newton's Generalized Binomial Theorem, Journal for History of Mathematics 27(2) (2014), 127-138. 고영미, 이상욱, Newton의 일반화된 이항정리의 기원, 한국수학사학회지 27(2) (2014), 127-138. http://dx.doi.org/10.14477/jhm.2014.27.2.12.
  15. Joseph-Louis LAGRANGE, Theorie des Fonctions Analytiques, 1797. https://archive.org/details/thoriedesfoncti00lagrgoog.
  16. LEE S., et al, Visualization of Calculus Concepts with GeoGebra, Korean Society of Mathematical Education, Communications of Mathematical Education 28(4) (2014), 457-474. 이상구 외, GeoGebra와 미분적분학 개념의 시각화, 한국수학교육학회지 시리즈E: 수학교육논문집 28(4) (2014), 457-474. http://dx.doi.org/10.7468/jksmee.2014.28.4.457.
  17. LEE W., SHIN H., Howard Eves, An Introduction to the History of Mathematics (translated). 이우영, 신항균 (역), 수학사, 경문사, 1995.
  18. Brian LOFT, Stephen Scariano, A Serendipitous Path to Taylor's Theorem, Mathematics and Computer Education 44(2) (2010), 105-114.
  19. Colin MACLAURIN, A Treatise on Fluxions, 1801. https://archive.org/details/atreatiseonflux02maclgoog.
  20. Jason MARTIN, Differences between experts' and students' conceptual images of the mathematical structure of Taylor series convergence, Educational Studies in Mathematics 82(2) (2013), 267-283. https://doi.org/10.1007/s10649-012-9425-7
  21. J. J. O'CONNOR, E. F. ROBERTSON, Augustin-Louis Cauchy, http://www-history.mcs.st-andrews.ac.uk/Biographies/Cauchy.html.
  22. J. J. O'CONNOR, E. F. ROBERTSON, James Gregory, http://www-history.mcs.st-andrews.ac.uk/Biographies/Gregory.html.
  23. J. J. O'CONNOR, E. F. ROBERTSON, Joseph-Louis Lagrange, http://www-history.mcs.st-andrews.ac.uk/Biographies/Lagrange.html.
  24. J. J. O'CONNOR, E. F. ROBERTSON, Brook Taylor, http://www-history.mcs.st-andrews.ac.uk/Biographies/Taylor.html.
  25. OH H. Y., A study on understanding of Taylor series, Korean Society of Mathematical Education, Communications of Mathematical Education 31(1) (2017). 오혜영, Taylor 급수의 이해에 대한 연구, 한국수학교육학회지 시리즈 E: 수학교육논문집 31(1) (2017), 71-84. http://dx.doi.org/10.7468/jksmee.2017.31.1.71.
  26. Robert T. SWTH, Roland B. MINTON, Calculus: Early Transcendental Functions, 3rd ed. Mc-Graw Hill, 2007.
  27. James STEWART, Essential Calculus; Early Transcendentals, Thomson, 2007.
  28. Dirk STRUIK, A Source Book in Mathematics 1200-1800, Harvard University Press, 1969.
  29. Brook TAYLOR, Methodus Incrementorum directa et inversa, Innys, 1715.
  30. Otto TOEPLITZ, The Calculus: A Genetic Approach (translated) The Chicago University Press, 2007.