DOI QR코드

DOI QR Code

Analysis of Reflectivity for Interfacial Roughness of Depth-Graded W/Si Multilayer Mirror

두께 변화 W/Si 다층박막거울의 계면 거칠기에 대한 반사율 분석

  • Chon, Kwon Su (Department of Radiological Science, Daegu Catholic University)
  • 천권수 (대구가톨릭대학교 방사선학과)
  • Received : 2018.01.30
  • Accepted : 2018.02.28
  • Published : 2018.02.28

Abstract

Multilayer mirrors have widely been used for monochromatization of X-ray with high reflection efficiency. The reflected X-ray energy or wavelength is determined by the d-spacing of a multilayer mirror and the incidence angle. The reflectivity critically depends on the number of bilayers and surface roughness on each interface. The multilayer mirror has a structure of alternative deposition of high and low Z-elements on the substrate. Each interface should be considered in the calculation of reflectivity. In this paper, we examine the degradation of reflectivity by the inter-diffusion combined with surface roughness on each interface for a W/Si multilayer mirror. In the depth-graded W/Si multilayer mirror, the FWHMs for angle and energy were larger than them of the uniform multilayer mirror. Inter-diffusion considerable gave rise to the degradation of reflectivity. To obtain measured reflectivity closed to the expected reflectivity, the inter-diffusion on W-Si and Si-W interfaces should be considered.

다층박막거울은 높은 반사 효율로 엑스선을 단색화 하는데 많이 사용되고 있다. 반사되는 엑스선의 파장은 두께주기와 입사각도에 의해 결정되고, 반사율은 층수와 표면 거칠기에 크게 의존하게 된다. 다층박막거울은 중원소와 경원소가 번갈아 적층되어 있는 구조로 되어 있으며 각 계면에서의 거칠기를 고려해야 한다. 본 논문에서는 두께 변화 W/Si 다층박막거울에서 계면 거칠기와 상호확산을 동시에 고려하여 반사율을 조사하였다. 두께 변화 다층박막거울은 균일한 다층박막거울에 비해 반사율은 감소하나 각도 및 에너지 반치폭이 넓은 특징을 보였으며, 상호확산에 따른 반사율의 저하가 크게 증가하였다. 이론적인 설계값에 가까운 반사율을 획득하기 위해서는 다층박막거울을 제작 할 때 나타나는 상호확산의 효과를 고려하여 설계함으로써 목적에 부합하는 최적의 다층박막거울을 설계하고 제작할 수 있을 것이다.

Keywords

References

  1. E. Spiller, Soft X-ray Optics, Washington, SPIE OPTICAL ENGINEERING PRESS, 1994.
  2. T. W. Barbee Jr, "Multilayers for X-ray Optics," Proceedings of SPIE, Vol. 563, pp. 5-28, 1985.
  3. J. Als-Nielsen D. McMorrow, Elements of modern X-ray physics, West Sussex, John Wiley & sons, 2001.
  4. K. S. Chon K. H. Yoon, "Monochromatic X-ray Imaging System Using a W/C Multilayer Mirror," Journal of the Korean Physical Society, Vol. 55, No. 6, pp. 2571-2577, 2009. https://doi.org/10.3938/jkps.55.2571
  5. Y. Tawara Y. Yamashita, H. Kunieda et al. "Development of multilayer suppermirror for hard X-ray telescopes," Proceedings of SPIE, Vol. 3444, pp. 569-575, 1998.
  6. K. S. Chon, S. K. Juhng, K. H. Yoon, "Interdiffusion Region in a Tungsten-Carbon Multilayer Coating of Small d-Spacing," Journal of the Korean Physical Society, Vol. 54, No. 1, pp. 23-28, 2009. https://doi.org/10.3938/jkps.54.23
  7. L. Nevot, P. Croce, "Characterization of surface by grazing x-ray reflection: application to the study of polishing of some silicate glasses," Revue de Physique Applique, Vol. 15, No. 3, pp. 761-779, 1980. https://doi.org/10.1051/rphysap:01980001503076100
  8. D. Attwood, SOFT X-RAYS AND EXTREME ULTRA VIOLET RADIATION: Principles and Applications, Cambridge, Cambridge University Press, 1999.
  9. E. Spiller, A. E. Rosenbluth, "Determination of thickness errors and boundary roughness from the measured performance of a multilayer coating," Optical Engineering, Vol. 25, No. 8, pp. 258954, 1986. https://doi.org/10.1117/12.7973935
  10. E. Spiller, "Characterization of multilayer coating by X-ray reflection," Revue de Physique Appliquee, Vol. 23, No. 10, pp. 1687-1700, 1988. https://doi.org/10.1051/rphysap:0198800230100168700
  11. B. L. Henke, E. M. Gullikson, J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92," Atomic Data and Nuclear Data Tables Vol. 54, No. 2, pp. 181-342, 1993. https://doi.org/10.1006/adnd.1993.1013