
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 2, Feb. 2018 817
Copyright ⓒ 2018 KSII

Improving Fault Traceability of Web
Application by Utilizing Software Revision

Information and Behavior Model

Seungsuk Baek1, Jung-Won Lee2, Byungjeong Lee1
1Department of Computer Science, University of Seoul

Seoul, 02504 - South Korea
[e-mail: {baekss0409, bjlee}@uos.ac.kr]

2Department of Electrical and Computer Engineering, Ajou University
Suwon, 16499 - South Korea

 [e-mail: jungwony@ajou.ac.kr]
*Corresponding author: Byungjeong Lee

Received October 15, 2017; accepted December 10, 2017;

published February 28, 2018

Abstract

Modern software, especially web-based software, is broadly used in various fields. Most
web applications employ design patterns, such as a model-view-controller (MVC) pattern and
a factory pattern as development technology, so the application can have a good architecture to
facilitate maintenance and productivity. A web application, however, may have defects and
developers must fix the defects when a user submits bug reports. In this paper, we propose a
novel approach to improving fault traceability in web application by using software revision
information and software behavior model to reduce costs and effectively handle the software
defect. We also provide a case study to show effectiveness of our approach.

Keywords: Fault Traceability, Software Revision Information, Behavior Model, Design Pattern,
Web Application

A preliminary version of this paper was presented at APIC-IST 2017, and was selected as an outstanding paper.
This work was supported by the 2015 Research Fund of the University of Seoul for Byungjeong Lee. Also, this
work was supported by Next-Generation Information Computing Development Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning
(NRF-2014M3C4A7030504) for Jung-Won Lee.

http://doi.org/10.3837/tiis.2018.02.016 ISSN : 1976-7277

818 Seungsuk Baek et al.: Improving Fault Traceability of Web Application by
Utilizing Software Revision Information and Behavior Model

1. Introduction

In order to effectively provide various services to many users, web-based software, which
has the advantages of both accessibility and extendibility, is broadly used in various fields. For
example, through a web application we can buy food, clothes, and other things from
anywhere; moreover, a web application can provide more products by extending customer
services. Generally, these applications have a lot of functionality in order to provide the
various services and experiences, and most web applications employ a design pattern, such as
a model-view-controller (MVC) pattern and a factory pattern as development technology, so
the application can have a good architecture to facilitate maintenance and productivity [1].

On the other hand, a web application may have defects [2] and developers must fix the
software defects discovered through system testing and users’ bug reports. At present, if there
is traceability information between source code related to an application’s defects, developers
can reduce the effort to find large amounts of source code to fix the defects. Therefore, with
the bug report, it is important to provide fault traceability links between source code and the
software bug. In this paper, we propose a novel approach to traceability links from bug report
to source code based on understanding design patterns like the MVC pattern, and we improve
the traceability links by utilizing a software behavior model and software revision information.

This study provides the following contributions.

 We extract faults from bug reports by using the design pattern applied to the software in

order to fix the defects.

 We utilize a software behavioral model to find relevant source code for a defect’s
behavior.

 We improve fault traceability through software revision information to identify additional

source code to fix defects.

The remaining sections of this paper are as follows. Section 2 provides background to this
study. Section 3 presents related works. We present our approach in Section 4, a case study
and results in Section 5, and we discuss our study in Section 6. Finally, we conclude the paper
and suggest future work in Section 7.

2. Background

2.1 Software Testing for Monitoring Software R&D Project
This project has a testing objective to support monitoring software R&D project through

content-based testing, and we have some roles in order to achieve the objective in the project
[3]. For example, we have to provide an integrated test process model, test-case generation
from a software model, and software-defect traceability from a bug report with a framework.
This study aims at software-defect traceability from a bug report, as already mentioned in the
introduction, and a case study will be conducted with the project.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 2, February 2018 819

2.2 MVC Pattern
A model-view-controller pattern is used in most web applications for software

maintenance. If you apply an MVC pattern to your application, you can see benefits. Fig. 1
shows the MVC pattern–based web application. In detail, the software architecture is divided
into three components. M (for model) denotes the data of the application, and the behavior
logic of the application (e.g. data insertion, updating, and deleting) is processed in M. V (view)
denotes the output of the processed data in the model to present to the user. C (controller) is
located between model and view; it handles the client’s requests and the data of model to
present it to the user in any view. Thus, with the MVC pattern, each component has loose
coupling between it and the others.

Fig. 1. MVC pattern-based web application

2.3 Software Revision Control
Software revision control [4] is a very important activity in software engineering, because

software evolves continuously [5] through software bug fixing or software requirement
changes. Most software development groups utilize a software revision control system to
manage their software. When software has a new revision, the history of the evolution from
previous revisions is recorded through a software revision control system, such as Git and
Subversion [6, 7]. For example, one revision has source code files that are handled by the
developer for bug fixing or enhancing software behavior. Therefore, the source code files in
the same revision are relevant to one another.

3. Related Work
Previous studies introduced approaches to traceability links between software artifacts.

Tsuchiya et al. introduced an approach to recovering traceability links between source code
and requirements by using a configuration management log and a vector space model [8].
They used the configuration management log written by a developer to match software
requirement specifications, and in their study, if the contents of the configuration management
log and the contents of software requirement specifications result in relevant content by
similarity calculations in a vector space model, they are relevant artifacts. They also improved

820 Seungsuk Baek et al.: Improving Fault Traceability of Web Application by
Utilizing Software Revision Information and Behavior Model

their approach through user feedback by using call relationships [9].
McMillan et al. presented a technique for indirectly recovering traceability links in

requirements documentation [10]. In order to recover traceability links between source code
and documentation, they used latent semantic indexing (LSI) [11] by applying singular value
decomposition [12] to determine textual similarities among words and documents. After that,
they used a structural analysis tool for finding source-to-source edges. Finally, they suggested
an indirect traceability link throughout the documentation through LSI and method call
relationships. Van Rompaey et al. demonstrated a method for identifying a tested object and a
tested method through last call before assert (LCBA) [13]. They analyzed the unit under
testing from a test case and tried to find an assert statement; generally, the target of the test is
located before the assert statement, so they could find the target of the test and then they could
find the actual source code of the tested object. Baek et al. proposed an approach to enhance
traceability from test to source code [14]. In detail, they first depicted unit test code as an
abstract syntax tree (AST), and then identified the tested object by the assert statement [13].
Table 1 show some assert statements they used in their study, where the first column of Table
1 denotes the assert statements for unit testing, and the second column of Table 1 provides a
description of each assert statement.

Table 1. Assert statements

Assert Statement Description

Assert Equals Test that two objects are equal

Assert False Test that a condition is false

Assert True Test that a condition is true

Assert Null Test that an object is null

Assert fail Test that whether exception is generated or not

Next, they enhanced traceability from test to source code by using a sequence diagram,

which identified the object in the previous step because a sequence diagram presents
interactions between objects through messages.

Most previous studies proposed an approach to recovering traceability links, such as source
code to requirement, or test to source code. In the next Section, we introduce an approach to
traceability links from software defect to source code.

4. Improving Fault Traceability of Web Application
In this Section, we introduce our approach, with Fig. 2 showing an overview. Our approach

has a process in four sequential steps to achieve our objective. First, we try to extract the fault
from a well-written bug report, which means the bug report has detailed content, so we know
what kind of defect has happened. After that, we try to find all classes related to the defective
behavior by using a software behavioral model. Next, we try to find unit-testing class of the
objects that we found in the second step through a software behavioral model, such as a
sequence diagram. Finally, we try to find other source code through software revision
information. We describe the details of our approach according to the steps, as follows. We
assume that

 (1)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 2, February 2018 821

where W is a set of classes in a web application and M, V, and C denote a set of the classes
as Model, View, and Controller in a web application W, respectively.

Fig. 2. Overview of our approach

4.1 Extracting Faults from Bug Reports
First, we try to find the web application’s defect from a submitted bug report. In general, a

bug report has a description of when the user encountered the problem and what kind of
problem it was. In our study, we use a well-written bug report.

Fig. 3 shows the identified controller from the bug report. In detail, a bug report has URI
information, and we can find a controller from the URI, because the URI written in the bug
report matches the RequestMapping of the method in the controller. In other words, as
introduced in Section 2.2, in an MVC pattern–based web application, the controller has the
role of entry point for the client's request, and therefore, it is important that the bug report
provides the request information to the developer so the developer can identify the controller
by the URI.

Fig. 3. Bug report and controller

This step is as follows. Initially, we set a set T for fault traceability to empty.

 (2)
where T is a set of classes for fault traceability. If c ∊ C is identified by a URI in a bug

report, we add class c to set T.

822 Seungsuk Baek et al.: Improving Fault Traceability of Web Application by
Utilizing Software Revision Information and Behavior Model

(3)

4.2 Finding Interaction Classes with Controller
After Step 1, we utilize a sequence diagram to find classes through messages [14].

Fig. 4. Sequence diagram

Fig. 4 is a sequence diagram that shows how the controller identified in the previous step

interacts with other classes. In detail, the View calls message1 from the controller and the
controller calls message2 from the Model. Thus, we can find and obtain other classes with the
controller through the sequence diagram. In particular, the model’s classes will be fixed,
because in an MVC pattern, the model is in charge of the behavior of the software, and the
defect is unexpected behavior. This step is as follows. If a controller class c ∊ T sends or
receives a message to or from View or Model class o, we add class o to set T.

(4)

where class o interacts with controller c ∊ T.

4.3 Finding Test Class
Next, we obtain unit testing source code of the objects that we found from the process

described in Section 4.2. The objects should have regression testing to protect against an
unexpected defect that did not exist previously when a method has a rebuilt state from
refactoring, bug fixing, and any other procedures. Due to this method (especially methods of
the model), classes will be fixed to remove the software bug, and their unit testing must be
performed with a unit testing tool [15] in order to check whether the method performs
correctly or not after rebuilding. Therefore, we need to find the unit testing source code of the
object.

In our study, we use an approach proposed by Van Rompaey et al. [13] to obtain the unit
testing source code. For example, we can gain unit testing source code for model, view, and
controller objects according to the following steps. First, we find the assert statement in the
testing source code, and next, we find an object located before the assert statement. This step is
as follows. If a test class tc tests an class c ∊ T, we add test class tc to set T.

(5)

 where tc is a test class which tests class c ∊ T.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 2, February 2018 823

4.4 Improving Traceability by Using Software Revision
Finally, we have to improve the fault traceability links through software revision

information. As mentioned in Section 2.3, all source code files in the same revision are
relevant to one another. Therefore, we investigate the revision that includes the classes
obtained in the previous step. If any revision contains the class (c, o, and tc), we improve fault
traceability collecting other files through its revision. This step is as follows. If an class o and
any t ∊ T appear in the same revision ri (i = 1, … N), we add class o to set T.

(6)

where N is the total number of revisions in a web application W.
Thus, we can improve the fault traceability of the web application by using software

revision information.

5. Case Study
We present a case study based on the approach proposed in Section 4 to verify our study.

We used a bug report and source code files of our software R&D project.

5.1 Extracting Faults from Bug Report
We used a well-written bug report. Fig. 5 shows a bug report, and this bug report has

‘/s2/testplan/schedule/insertschedule’ as URI information with a description. We can find a
controller from the URI, because the URI written in the bug report matches RequestMapping
of the method in TestPlanController.

Fig. 5. An example of bug report

824 Seungsuk Baek et al.: Improving Fault Traceability of Web Application by
Utilizing Software Revision Information and Behavior Model

Fig. 6 shows TestPlanController and its method. As shown in Fig. 6, the insertSchedule

method has RequestMapping, which matches the URI written in the bug report. Therefore, we
could identify the defective method in TestPlanController from the bug report. If no URI
information exists in a bug report, we can use an attached file such as a captured screen image
or an otherwise occurring event (e.g. button click or key press), because it is not a problem for
developers to extract the URI from any event function or captured screen image. Therefore, it
is important that the bug report provide rich information for finding the fault.

Fig. 6. TestPlanController’s method

5.2 Finding Interaction Classes with Controller
In this step, we use a sequence diagram (Fig. 7) by which we obtain the classes that interact

with TestPlanController through messages in the sequence diagram.

Fig. 7. Interaction of classes with the controller

As shown in Fig. 7, TestPlanController interacts with other classes. In detail, we obtain

TestingPlanOrganization as V (View) and TestSchedule and TestPlanDAO as M (Model)
because they interact with TestPlanController by messages.

5.3 Finding Test Class
We tried to find unit testing source code for the TestingPlanOrganization, TestSchedule,

TestPlanDAO, and TestPlanController objects to perform regression testing after fixing the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 2, February 2018 825

defect. First, we find the assert statement in the testing source code, and after that, we find an
object located before the assert statement. If the object was one of them, we took the unit
testing source code.

Table 2. Unit testing source codes

Source Code Description

TestScheduleInsertingTest.java

These are testing source codes of TestSchedule for
insertSchedule, deleteSchedule, updateSchedule, and
selectSchedule methods, respectively.

TestScheduleDeletingTest.java

TestScheduleUpdatingTest.java

TestScheduleSelectingTest.java

TestPlanDaoInsertingTest.java

These are testing source codes of TestPlanDAO for
insertSchedule, deleteSchedule, updateSchedule, and
selectSchedule methods, respectively.

TestPlanDaoDeletingTest.java

TestPlanDaoUpdatingTest.java

TestPlanDaoSelectingTest.java

Table 2 shows that we obtained unit testing source code using an approach proposed by
Van Rompaey et al. [13], along with their descriptions. As shown in Table 2, we could gain
unit testing source code for the TestSchedule and TestPlanDAO objects, but there was no unit
testing source code for the other objects in our software R&D project.

5.4 Improving Traceability by Using Software Revision
Finally, we tried to improve the fault traceability links through software revision

information.

Fig. 8. Information on a revision

Fig. 8 shows revision number 184 as an example, and we could gain additional source code

from revision number 184 because it contained TestSchedule class that we already found in
Section 5.2 and other files were in the same revision with the TestSchedule class. So, as
mentioned in sections 2.3 and 4.4, they are relevant to one another. Next, we tried to
investigate the additional source code.

Table 3 shows that we obtained additional source code and file. We could gain various
kinds of source code and files. In detail, we could gain interface source code of the classes
obtained in the previous step, and we could gain source code such as TestScheduleEntity.
TestScheduleEntity has the role of an entity bean for Object-Relational Mapping (ORM),
because we use an ORM framework in our project [16].

826 Seungsuk Baek et al.: Improving Fault Traceability of Web Application by
Utilizing Software Revision Information and Behavior Model

Finally, due to the revision number 275 which contained TestPlanDAO class that we
already found in Section 5.2, we also could gain configuration files such as
persistence-context.xml and servlet-context.xml as well as classes.

Table 3. Additional files

File Description Rev. No.

TestScheduleInterface.java Interface of TestSchedule

184

TestPlanDaoInterface.java Interface of TestPlanDAO

TestingPlanOrganizationInterface.java Interface of TestingPlanOrganization

TestScheduleEntity.java Entity bean for Object-Relational Mapping
from TestScheduleTable of DB

Vis.js Script file for dynamic representation of
inserted schedule contents

Soremo.css Css file for control attribution such as color,
position, and etc. of view

persistence-context.xml Config file for connecting to DB
275

servlet-context.xml Config file for framework of web
development

6. Discussion
We propose an approach to improving fault traceability of web applications by utilizing

software revision information and a behavior model, and we offered a case study according to
the steps introduced in Section 4. Our case study showed that source code is found
increasingly with each step, and our approach showed the improved fault traceability to reduce
the developer’s efforts. In addition, we conducted a case study with another bug report and
controller in the same manner.

Table 4. Comparison with other studies

Approach Statement
Analysis

Behavioral
Model

Revision
Information

of
classes

of
files

C. McMillan et al. [10] O X X 8 0

B. Van Rompaey et al. [13] O X X 12 0

S. Baek et al. [14] O O X 20 0

Our Study O O O 28 4

Table 4 shows a comparison with other studies. Our approach uses statement analysis, a

software behavioral model, and software revision information. However, the other works do
not use software revision information. Our approach can find more classes than the other

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 2, February 2018 827

works and can also find resource files as well as classes. Therefore, our approach improves
fault traceability links better than the other works.

However, we have to apply it to other projects to verify whether our approach is a useful
approach or not, and we must more closely investigate the bug reports because it may be that
we can use other attributes in the bug report.

7. Conclusion
Web-based software, which has the advantages of both accessibility and extendibility, is

broadly used in various fields. However, it is software, so it can have defects, and the defects
must be fixed by developers. In this study, we provided an approach to improving fault
traceability in web applications by utilizing software revision information and a behavior
model to reduce the developer’s efforts. In detail, we first tried to extract the fault from a bug
report. With the request URI in the bug report matched to the method of the controller, we
could find the controller and method related to the defect’s behavior. Next, we tried to obtain
interaction classes with the controller from a sequence diagram. In general, a sequence
diagram provides interactions between classes, so we could find and obtain other classes that
interact with the controller through messages. After that, we tried to obtain a unit test case for
regression testing, and finally, we showed the improved fault traceability by using software
revision information.

As a result, our approch outperforms other work, and we expect our approach can be a
useful one for improving fault traceability. In the future, we will provide a framework for
software defect fixing [17] as well as for supporting fault traceability links.

References
[1] E. Freeman, B. Bates, K. Sierra, and E. Robson, "Head First Design Patterns: A Brain-Friendly

Guide," O'Reilly Media, 2004. Article (CrossRef Link)
[2] G. Yang, T. Zhang, and B. Lee, "Towards Semi-automatic Bug Triage and Severity Prediction

Based on Topic Model and Multi-feature of Bug Reports," in Proc. of Computer Software and
Applications Conference (COMPSAC), 2014. Article (CrossRef Link)

[3] A. Dashbalbar, S. Song, J. Lee, and B. Lee, "Towards Enacting a SPEM-based Test Process with
Maturity Levels," KSII Transactions on Internet and Information Systems, vol. 11, no. 2, pp.
1217-1233, 2017. Article (CrossRef Link)

[4] B. Alwis, and J. Sillito, "Why are software projects moving from centralized to decentralized
version control systems?," in Proc. of the 2009 ICSE Workshop on Cooperative and Human
Aspects on Software Engineering, pp. 36-39, 2009. Article (CrossRef Link)

[5] T. Mens, and S. Demeyer, "Software Evolution," Springer Publishing Company, 2008.
Article (CrossRef Link)

[6] J. Loeliger, and M. McCullough, "Version Control with Git: Powerful tools and techniques for
collaborative software development," O'Reilly Media, 2012. Article (CrossRef Link)

[7] C. Michael Pilato, B. Collins-Sussman, and B. Fitzpatrick, "Version Control with Subversion:
Next Generation Open Source Version Control," O'Reilly Media, 2008. Article (CrossRef Link)

[8] R. Tsuchiya, H. Washizaki, Y. Fukazawa, T. Kato, M. Kawakami, and K. Yoshimura, "Recovering
traceability links between requirements and source code using the configuration management log,"
IEICE TRANSACTIONS on Information and Systems, vol. 98, no. 4, pp. 852-862, 2015.
Article (CrossRef Link)

[9] R. Tsuchiya, H. Washizaki, Y. Fukazawa, K. Oshima, and R. Mibe, "Interactive Recovery of
Requirements Traceability Links Using User Feedback and Configuration Management Logs," in
Proc. of the International Conference on Advanced Information Systems Engineering, pp. 247-262,

https://dl.acm.org/citation.cfm?id=1076324
https://dx.doi.org/10.1109/COMPSAC.2014.16
https://dx.doi.org/10.3837/tiis.2017.02.034
https://dx.doi.org/10.1109/CHASE.2009.5071408
https://dx.doi.org/10.1007/978-3-540-76440-3
http://shop.oreilly.com/product/0636920022862.do
http://shop.oreilly.com/product/9780596004484.do
https://dx.doi.org/10.1587/transinf.2014EDP7199

828 Seungsuk Baek et al.: Improving Fault Traceability of Web Application by
Utilizing Software Revision Information and Behavior Model

2015. Article (CrossRef Link)
[10] C. McMillan, D. Poshyvanyk, and M. Revelle, "Combining textual and structural analysis of

software artifacts for traceability link recovery," in Proc. of ICSE Workshop on Traceability in
Emerging Forms of Software Engineering, 2009. Article (CrossRef Link)

[11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, "Indexing by Latent
Semantic Analysis," Journal of the American Society for Information Science, vol. 41, pp. 391-407,
1990. Article (CrossRef Link)

[12] G. Salton, and M. McGill, "Introduction to Modern Information Retrieval," McGraw-Hill, 1983.
Article (CrossRef Link)

[13] B. Van Rompaey, and S. Demeyer, "Establishing traceability links between unit test cases and
units under test," in Proc. of European Conference on Software Maintenance and Reengineering,
pp. 209-218, 2009. Article (CrossRef Link)

[14] S. Baek, J. Lee, and B. Lee, "Utilizing Software Behavioral Model to Enhance Traceability from
Test to Source Code," in Proc. of the 19th Korea Conference on Software Engineering, 2017.

[15] P. Tahchiev, F. Leme, V. Massol, and G. Gregory, "JUnit in Action," Manning Publications, 2010.
Article (CrossRef Link)

[16] C. Babu, and G. Gunasingh, "DESH: Database evaluation system with hibernate ORM
framework," in Proc. of International Conference on Advances in Computing, Communications
and Informatics (ICACCI), 2016. Article (CrossRef Link)

[17] H. Yokoyama, Y. Higo, K. Hotta, T. Ohta, K. Okano, and S. Kusumoto, "Toward improving
ability to repair bugs automatically: a patch candidate location mechanism using code similarity,"
in Proc. of the 31st Annual ACM Symposium on Applied Computing, pp. 1364-1370, 2016.
 Article (CrossRef Link)

Seungsuk Baek, He received his B.S. degree from Eulji University, Seongnam,
Korea, in 2012. He is currently studying toward the M.S. degree in Computer Science
at University of Seoul, Korea. His research areas of interest include software
engineering and software fault.

Jung-Won Lee, is an associate professor of the Department of Electrical and
Computer Engineering at Ajou University, Korea. She received her PhD. Degree in
Computer Science and Engineering from Ewha Womans University, Korea, in 2003.
She was a researcher of LG Electronics and did an internship in the IBM Almaden
Research Center, USA. Her areas of research include context-aware, embedded
software and software engineering.

Byungjeong Lee, He received the B.S., M.S., and Ph.D. degrees in Computer
Science from Seoul National University in 1990, 1998, and 2002, respectively. He
was a researcher of Hyundai Electronics, Corp. from 1990 to 1998. Currently, he is a
professor of the Department of Computer Science and Engineering at the University
of Seoul, Korea. His research areas include software engineering and web science.

https://dx.doi.org/10.1007/978-3-319-19069-3_16
https://dx.doi.org/10.1109/TEFSE.2009.5069582
https://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6%3c391::AID-ASI1%3e3.0.CO;2-9
https://dl.acm.org/citation.cfm?id=576628
https://dx.doi.org/10.1109/CSMR.2009.39
https://www.manning.com/books/junit-in-action-second-edition
https://dx.doi.org/10.1109/ICACCI.2016.7732441
https://dx.doi.org/10.1145/2851613.2851770

