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Abstract 
 

The hash function RIPEMD-160 is a worldwide ISO/IEC standard and the hash function 
HAS-160 is the Korean hash standard and is widely used in Korea. On the basis of differential 
meet-in-the-middle attack and biclique technique, a preimage attack on 34-step RIPEMD-160 
with message padding and a pseudo-preimage attack on 71-step HAS-160 without message 
padding are proposed. The former is the first preimage attack from the first step, the latter 
increases the best pseudo-preimage attack from the first step by 5 steps. Furthermore, we 
locate the linear spaces in another message words and exchange the bicliques construction 
process and the mask vector search process. A preimage attack on 35-step RIPEMD-160 and a 
preimage attack on 71-step HAS-160 are presented. Both of the attacks are from the 
intermediate step and satisfy the message padding. They improve the best preimage attacks 
from the intermediate step on step-reduced RIPEMD-160 and HAS-160 by 4 and 3 steps 
respectively. As far as we know, they are the best preimage and pseudo-preimage attacks on 
step-reduced RIPEMD-160 and HAS-160 respectively in terms of number of steps. 
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1. Introduction 

Hash Functions play an important role in modern cryptography. They should satisfy three 
classical security properties: collision resistance, preimage resistance and second preimage 
resistance. With the breakthroughs in the collision attacks on MD5 [1], SHA-0 [2] and SHA-1 
[3], research on preimage attack is strongly motivated (see [4-11] for example). For an n-bit 
hash function, a generic algorithm requires 2n computations for finding a preimage. The 
meet-in-the-middle attack [4, 12] is the basic tool used in preimage attacks which is improved 
by splice-and-cut technique [4], biclique technique [6], initial structure technique [10] and so 
on. Knellwolf and Khovratovich [7] introduced the differential meet-in-the-middle attack 
which is suitable for the hash functions with linear message expansion and weak diffusion 
properties. Recently, Espitau et al. [13] generalized it to the higher-order differential 
meet-in-the-middle attack. 

RIPEMD-160 [14] was designed by Dobbertin et al. and standardized in ISO/ IEC 10118-3 
[15]. It is one of the unbroken hash functions which implemented in numerous security 
protocols. The first collision attack on RIPEMD-160 was proposed by Mendel et al. [16]. 
Mendel et al. [17] improved the collision attack using the method of the attacks on MD5 and 
SHA-1 [1, 3]. They obtained a 48-step semi-free-start near-collision attack and a 36-step 
semi-free-start collision attack on RIPEMD-160. Later Mendel et al. [18] improved the 
36-step semi-free-start collision attack to 42-step. Furthermore, they, using a carefully 
designed non-linear path search tool, obtained a 36-step semi-free-start collision attack from 
the first step. As for the preimage attack, Ohtahara et al. [8] presented the first preimage attack 
on step-reduced RIPEMD-160. They gave a 30-step second-preimage attack and a 31-step 
preimage attack on RIPEMD-160 using the local-collision and initial structure techniques. 
Moreover, Sasaki and Wang [19] proposed the distinguishing attacks on RIPEMD-160. They 
gave a practical 2-dimension sum distinguisher on 42-step RIPEMD-160 and a theoretical one 
on 51-step RIPEMD-160. 

HAS-160 [20] is the Korean hash standard and is widely used in Korea. Its structure is 
similar to SHA-0 and SHA-1 expect the message expansion. Yun et al. [21] presented the first 
cryptanalysis on HAS-160. They proposed a collision attack on 45-step HAS-160 by applying 
techniques introduced by Wang et al. [22]. Later Cho et al. [23] extended the previous work to 
53 steps by selecting message differences judiciously and constructing a more complicated 
first round differential path. Mendel and Rijmen [24] improved the attack on 53-step HAS-160 
to a practical one by using a slightly different message modification technique and extended 
the attack to 59 steps. The best collision attack on HAS-160 is a practical 65-step 
semi-free-start collision attack which proposed by Mendel et al. [25]. Sasaki and Aoki [9] 
proposed the first preimage attack on step-reduced HAS-160. They presented a 48-step 
preimage attack using splice-and-cut and partial-matching techniques and a 52-step preimage 
attack using local-collision technique. Hong et al. [5] improved the Sasaki and Aoki’s work [9] 
to 68 steps. Moreover, Kircanski et al. [26] proposed a boomerang attack on the full version of 
HAS-160. 

This paper improves the preimage and pseudo-preimage attacks on step-reduced 
RIPEMD-160 and HAS-160 using differential meet-in-the-middle attack and biclique 
technique. A preimage attack on 34-step RIPEMD-160 (with message padding) with 
complexity 2158.91 and a pseudo-preimage attack on 71-step HAS-160 (without message 
padding) with complexity 2158.13 are presented. Both of the attacks are from the first step. 
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Furthermore, preimage attacks from the intermediate step and satisfying the message padding 
are also proposed. A preimage attack on 35-step RIPEMD-160 holds with a complexity of 
2159.38 and a preimage attack on 71-step HAS-160 holds with a complexity of 2158.97. In the 
attack on RIPEMD-160, we locate the linear spaces in one message word to decrease the error 
probability. Owing to the linear spaces located in the same message word and the bicliques 
located in the Left branch and the Right branch, the bicliques are more sophisticated. So we 
exchange the bicliques construction process and the mask vector search process to make the 
mask vector match the constant bits of initial values. For this reason, we improve the preimage 
attack on RIPEMD-160 from 34-step to 35-step. Because the pseudo-preimage attack on 
71-step HAS-160 uses the message word m15, it does not satisfy the message padding. 
However, the preimage attack on 71-step HAS-160 easily satisfies the message padding by 
fixing the linear spaces in message words m0, m10, m6 and m12. The dimension of the linear 
spaces increases from 3 to 5, which benefits from the linear spaces located in these words. In 
this case, the complexity of pseudo-preimage attack is improved and a preimage attack on 
71-step HAS-160 is obtained. As far as we know, they are the best preimage and 
pseudo-preimage attacks on step-reduced RIPEMD-160 and HAS-160 in term of number of 
steps. The previous work and our results about the (pseudo-)preimage attacks are summarized 
in Table 1. 

 
Table 1. Summary of the (pseudo-)preimage attacks on RIPEMD-160 and HAS-160 

Hash Function Steps Complexity Source Pseudo-preimage Preimage 
RIPEMD-160 31(50-79) 2148 2155 [8] 
RIPEMD-160 34(0-33) 2155.81 2158.91 Section 4.1 
RIPEMD-160 35(1-35) 2156.75 2159.38 Section 4.2 

HAS-160 48(1-48, 21-68) 2128 2145 [9] 
HAS-160 52(12-63) 2144 2153 [9] 
HAS-160 65(0-64) 2143.4 2152.7 [5] 
HAS-160 67(0-66) 2154 2158 [5] 
HAS-160 68(12-79) 2150.7 2156.3 [5] 
HAS-160 71(0-70) 2158.13 None Section 4.3 
HAS-160 71(6-76) 2155.93 2158.97 Section 4.4 

 
Section 2 summarizes the related techniques and differential meet-in-the-middle attack 

with bicliques. Section 3 gives a brief description of RIPEMD-160 and HAS-160. Section 4 
presents preimage and pseudo-preimage attacks on step-reduced RIPEMD-160 and HAS-160. 
Finally, we conclude the paper in Section 5. 

2. Preliminary 
In this part, we briefly summarize the differential meet-in-the-middle attack and the biclique 
search algorithm. Here, some notations are introduced in advance(see Table 2). 

 
Table 2. The major symbols used in this paper 

Symbols Definitions 
LD1 the linear space used in CF1 
LD2 the linear space used in CF2 

d the dimension of LD1 and LD2 
n the length of the chaining value and hash value 
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P the output list of CF3 
Q the input list of CF3 

P[δ2] the element of P corresponding to δ2 
Q[δ1] the element of Q corresponding to δ1 

T the mask vector, where nT }1,0{∈  is a d dimension vector 
Δ[i] the i-th bit of Δ, where 0 ≤ i ≤ n  ̶  1 

 

2.1 Converting pseudo-preimages to a preimage 
The classical algorithm that converts pseudo-preimages to a preimage [27] is described. 
Assume there is an algorithm that finds a pseudo-preimage in the complexity of 2k. Prepare a 
table that includes 2/2 kn− entries of pseudo-preimages. The complexity of this step is 

kknkn 222 2/2/ ×= −+ . Randomly chosen 2/2 kn+ 1-block message, calculate the output of the 
message, then one of them agrees with the entries in the table with high probability. The 
complexity of the matching step is 2/2 kn+ . The corresponding message is a preimage of the 
hash function. Therefore, the total complexity for finding a preimage is 

2/2/12/ 222 knknkn ++++ += . 

2.2 The differential meet-in-the-middle attack 
The differential meet-in-the-middle technique interprets the meet-in-the-middle attack in the 
differential view. Combined with the statistical tool, it can analyse more steps of hash 
functions. The differential meet-in-the-middle attack with bicliques is summarized as follows 
(see also Fig. 1). 
 Split the compression function and construct the linear spaces. Split the compression 

function CF into 3 parts, 123 CFCFCFCF ••= . Choose LD1 and LD2 such that 
}0{21 =LDLD  . 

 Construct the bicliques in CF3. For all 2121 ),( LDLD ×∈δδ , using the biclique search 
algorithm constructs the bicliques such that ])[,(][ 12132 δδδδ QMCFP ⊕⊕= . 

 Search for the mask vector T. Randomly choose M and Q[0], compute 
])0[,(3 QMCFP = . For each 11 LD∈δ and 22 LD∈δ , search for the difference 1∆  and 

2∆ , such that ])0[,(])0[,( 1111 PMCFPMCF δ⊕⊕=∆ and ⊕=∆ − ])0[,(1
22 QMCF  

])0[,( 2
1

2 QMCF δ⊕−  hold with high probability. Then for each 2121 ),( LDLD ×∈δδ , 
compute 22

1
2111 ])0[,(])0[,( ∆⊕⊕⊕∆⊕⊕=∆ − QMCFPMCF δδ . For each bit i in ∆ , 

count the number of 1][ =∆ i . Set those d bits of T to 1 which have the lowest counters 
and the other bits of T to 0. 

 Search for the candidate preimage. Compute the list 22211 ])[,( ∆⊕⊕= δδ PMCFL  
and the list 111

1
22 ])[,( ∆⊕⊕= − δδ QMCFL . If 21 LL T= , then 21 δδ ⊕⊕M  is a 

candidate pseudo-preimage. For a mask vector nT }1,0{∈ , 21 LL T=  means 
0)( 21 =⊕∧ LLT , where ∧  denotes bitwise AND. 

 
The error is defined as: 21 δδ ⊕⊕M  is a preimage, but we reject it as false. Assume α  is the 
the error probability, Γ is the cost of CF1 and CF2, and reΓ  is the cost of retesting a candidate 
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preimage. The total complexity of the differential meet-in-the-middle preimage attack is 
)1/()(2 α−+×−

re
dn ΓΓ . 

 

 
Fig. 1. Schematic view of the differential meet-in-the-middle attack with bicliques 

 

2.3 The biclique search algorithm 
A biclique for CF3 is a tuple {M, LD1, LD2, Q, P}, where M is a message, such that for all 

2121 ),( LDLD ×∈δδ , ])[,(][ 12132 δδδδ QMCFP ⊕⊕= . Assume 3CF  is linearized by CF3, 
i.e., replacing + by ⊕  and setting the constants to 0. The bicliques can be searched as follows. 
 Linearize CF3 and split 3CF into 2 parts, 1

3
2

33 CFCFCF •= . Assume )( 2δFT  is the 

differences of the outputs of 1
3CF  corresponding to 2δ , and )( 1δBT  is the differences of 

the outputs of 12
3 )( −CF  corresponding to 1δ . 

 For each 11 LD∈δ  and 22 LD∈δ  calculate )( 1δBT  and )( 2δFT , such that 

)0,()()( 1
12

31 δδ −= CFBT  and )0,()( 2
1
32 δδ CFFT = , deduce the sufficient conditions to 

make sure the output differences of all non-linear Boolean functions are zero. 
 Assume CV is the intermediate chaining value which connects 1

3CF and 2
3CF . Randomly 

choose M and CV, set a part of the sufficient conditions. 
 For each 11 LD∈δ  and 22 LD∈δ , calculate ][ 1δQ  and ][ 2δP , such that 

))()(,()(][ 122
11

31 δδδδ BTFTCVMCFQ ⊕⊕⊕= −  holds for every 22 LD∈δ  and 
))()(,(][ 121

2
32 δδδδ BTFTCVMCFP ⊕⊕⊕=  holds for every 11 LD∈δ . 

 If {M, LD1, LD2, Q, P } constitute a biclique, return (M, Q[0]). Otherwise, repeat the 
above steps until a biclique is constructed. 

3. Description of RIPEMD-160 and HAS-160 
In this section, we briefly introduce our targeted hash functions. Both of the hash functions 
adopt the Merkel-Damgård structure and process 512-bit input message blocks and produce a 
160-bit hash value. They first call the message padding procedure. The message padding 
procedure ensures the padded message is a multiple of 512 bits. For an l-bit message, append 
the bit “1” to the end of the message, followed by k “0” bits, where k is the smallest 
non-negative solution to the equation 512mod4481 ≡++ kl . Then append the 64-bit block 
that is equal to the number l expressed using a binary representation. The words m14 and m15 in 
the last message block represent the message length. Then, using the compression function, 
they update the initial value and produce the hash value. The compression function of 
RIPEMD-160 and HAS-160 consist of a message expansion function and a state update 
transformation, see the details in [14] and [20]. 
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3.1 Description of RIPEMD-160 
In this part, the compression function of RIPEMD-160 is described. 

3.1.1 Message Expansion 
The message expansion of RIPEMD-160 splits the 512-bit message block M into 16 words m0, 
…, m15, and expands them into 160 expanded message words L

iw  and R
iw (0 ≤ i ≤ 79). The 

expansion is specified in Table 2. 
 

Table 2. Message order and rotation of RIPEMD-160 
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

wi
L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 

wi
R 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 

si
L 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8 7 6 8 13 

si
R 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6 9 13 15 7 

i 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 
wi

L 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 

wi
R 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 

si
L 11 9 7 15 7 12 15 9 11 7 13 12 11 13 6 7 14 9 13 15 

si
R 12 8 9 11 7 7 12 7 6 15 13 11 9 7 15 11 8 6 6 14 

i 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

wi
L 2 7 0 6 13 11 5 12 1 9 11 10 0 8 12 4 13 3 7 15 

wi
R 11 8 12 2 10 0 4 13 8 6 4 1 3 11 15 0 5 12 2 13 

si
L 14 8 13 6 5 12 7 5 11 12 14 15 14 15 9 8 9 14 5 6 

si
R 12 13 5 14 13 13 7 5 15 5 8 11 14 14 6 14 6 9 12 9 

i 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

wi
L 14 5 6 2 4 0 5 9 7 12 2 10 14 1 3 8 11 6 15 13 

wi
R 9 7 10 14 12 15 10 4 1 5 8 7 6 2 13 14 0 3 9 11 

si
L 8 6 5 12 9 15 5 11 6 8 13 12 5 12 13 14 11 8 5 6 

si
R 12 5 15 8 8 5 12 9 12 5 14 6 8 13 6 5 15 13 11 11 

 

3.1.2 State Update Transformation 
The state update transformation of RIPEMD-160 starts from an initial value of five 32-bit 
words 0A , 0B , 0C , 0D , 0E  and updates them in 80 steps. For the i-th (0 ≤ i ≤ 79) step, the 
32-bit words L

iw  and R
iw  are used and the state variables L

iA , L
iB , L

iC , L
iD , L

iE , R
iA , R

iB , 
R
iC , R

iD , R
iE  are update as: 

Left branch: 
,)),,((1

L
i

L
i

L
i

L
i

L
i

L
i

L
i

L
i

L
i

L
i EskwDCBFAB +<<<+++=+  

.,10,, 1111
L
i

L
i

L
i

L
i

L
i

L
i

L
i

L
i DECDBCEA =<<<=== ++++  

Right branch: 
,)),,((1

R
i

R
i

R
i

R
i

R
i

R
i

R
i

R
i

R
i

R
i EskwDCBFAB +<<<+++=+  

.,10,, 1111
R
i

R
i

R
i

R
i

R
i

R
i

R
i

R
i DECDBCEA =<<<=== ++++  

The bitwise Boolean function ),,( L
i

L
i

L
i

L
i DCBF , ),,( R

i
R
i

R
i

R
i DCBF , round constant L

ik , 
R
ik  are given in Table 3 and the rotational constant L

is , R
is  are specified in Table 2. 

If M  is the last block, ( RL DCB 80800 ++ , RL EDC 80800 ++ , RL AED 80800 ++ , RL BAE 80800 ++ , 
RL CBA 80800 ++ ) is the hash value, otherwise as the inputs of the next message block. 
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Table 3. The Boolean function and round constant of RIPEMD-160 
Step Fi

L(Bi
L, Ci

L, Di
L) ki

L Fi
R(Bi

R, Ci
R, Di

R) ki
R 

0 ≤ i ≤ 15 Bi
L ⊕ Ci

L ⊕ Di
L 0x00000000 Bi

R ⊕ (Ci
R ∨ ( ¬Di

R)) 0x50a28be6 
16 ≤ i ≤ 31 (Bi

L ∧ Ci
L) ∨ ((¬ Bi

L) ∧ Di
L) 0x5a827999 (Bi

R ∧ Di
R) ∨ (Ci

R ∧ ( ¬Di
R)) 0x5c4dd124 

32 ≤ i ≤ 47 (Bi
L ∨ (¬Ci

L))⊕ Di
L 0x6ed9eba1 (Bi

R ∨ (¬ Ci
R))⊕ Di

R 0x6d703ef3 
48 ≤ i ≤ 63 (Bi

L ∧ Di
L) ∨ (Ci

L ∧ (¬ Di
L)) 0x8f1bbcdc (Bi

R ∧ Ci
R) ∨ ((¬ Bi

R) ∧ Di
R) 0x7a6d76e9 

64 ≤ i ≤ 79 Bi
L ⊕ (Ci

L ∨ (¬ Di
L)) 0xa953fd4e Bi

R ⊕ Ci
R ⊕ Di

R 0x00000000 
 

3.2 Description of HAS-160 

In this part, the compression function of HAS-160 is described. 

3.2.1 Message Expansion 

The message expansion of HAS-160 splits the 512-bit message block M  into 16 words 0m , 
…, 15m , and expands them into 80 expanded message words iw (0 ≤ i ≤ 79). The expansion is 
specified in Table 4. 

 
Table 4. Message expansion of HAS-160 

i 0 1 2 3 4 5 6 7 8 9 
wi m8 ⊕ m9 ⊕ m10 ⊕ m11 m15 m15 m15 m15 m12 ⊕ m13 ⊕ m14 ⊕ m15 m4 m5 m6 m7 
i 10 11 12 13 14 15 16 17 18 19 

wi m0 ⊕ m1 ⊕ m2 ⊕ m3 m8 m9 m10 m11 m4 ⊕ m5 ⊕ m6 ⊕ m7 m12 m13 m14 m15 
i 20 21 22 23 24 25 26 27 28 29 

wi m11 ⊕ m14 ⊕ m1 ⊕ m4 m3 m6 m9 m12 m7 ⊕ m10 ⊕ m13 ⊕ m0 m15 m2 m5 m8 
i 30 31 32 33 34 35 36 37 38 39 

wi m3 ⊕ m6 ⊕ m9 ⊕ m12 m11 m14 m1 m4 m15 ⊕ m2 ⊕ m5 ⊕ m8 m7 m10 m13 m0 
i 40 41 42 43 44 45 46 47 48 49 

wi m4 ⊕ m13 ⊕ m6 ⊕ m15 m12 m5 m14 m7 m8 ⊕ m1 ⊕ m10 ⊕ m3 m0 m9 m2 m11 
i 50 51 52 53 54 55 56 57 58 59 

wi m12 ⊕ m5 ⊕ m14 ⊕ m7 m4 m13 m6 m15 m0 ⊕ m9 ⊕ m2 ⊕ m11 m8 m1 m10 m3 
i 60 61 62 63 64 65 66 67 68 69 

wi m15 ⊕ m10 ⊕ m5 ⊕ m0 m7 m2 m13 m8 m11 ⊕ m6 ⊕ m1 ⊕ m12 m3 m14 m9 m4 
i 70 71 72 73 74 75 76 77 78 79 

wi m7 ⊕ m2 ⊕ m13 ⊕ m8 m15 m10 m5 m0 m3 ⊕ m14 ⊕ m9 ⊕ m4 m11 m6 m1 m12 
 

3.2.2 State Update Transformation 

The state update transformation of HAS-160 starts from an initial value of five 32-bit words 
0A , 0B , 0C , 0D , 0E  and updates them in 80 steps. For the i-th (0 ≤ i ≤ 79) step, the 32-bit 

word iw  is used and the state variables iA , iB , iC , iD , iE  are update as: 

,),,()( 1
1 iiiiiiiiii kwEDCBFsAA ++++<<<=+  

.,,, 11
2

11 iiiiiiiii DECDsBCAB ==<<<== ++++  
The bitwise Boolean function ),,( iiii DCBF , round constant ik  and rotation const 2

is  used 
in each step are given in Table 5. The rotational constant 1

is  are given in Table 6. 
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Table 5. The Boolean function and round constant of HAS-160 
Step Fi (Bi, Ci, Di) ki si

2 
0 ≤ i ≤ 19 (Bi ∧ Ci)∨ ((¬ Bi) ∧ Di) 0x00000000 10 

20 ≤ i ≤ 39 Bi⊕ Ci ⊕ Di 0x5a827999 17 
40 ≤ i ≤ 59 Ci ⊕ (Bi∨ (¬ Di)) 0x6ed9eba1 25 
60 ≤ i ≤ 79 Bi⊕ Ci ⊕ Di 0x8f1bbcdc 30 

 
Table 6. The shift si

1 of HAS-160 
Step si

1 
20modi  5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13 

 
If M  is the last block, ( 080 AA + , 080 BB + , 080 CC + , 080 DD + , 080 EE + ) is the hash 

value, otherwise as the inputs of the next message block. 

4. Attacks on step-reduced RIPEMD-160 and HAS-160 
In this section, we describe the details of the preimage and pseudo-preimage attacks on 
step-reduced RIPEMD-160 and HAS-160. Assume ),( bami =∆  means the bits from the a-th 
bit to the b-th bit of im∆  take all possible values, and the other bits are 0. im∆  can be 
represented by a linear space. 1CF  and 1

2
−CF  are obtained from 1CF  and 1

2
−CF  respectively 

by linearizing the step function, i.e., replacing + by ⊕  and setting the constants and input 
chaining values of 1CF  and 1

2
−CF  to 0. 

4.1 Preimage attack on 34-step RIPEMD-160 from the first step 

4.1.1 Split the compression function and construct the linear spaces 
The forward direction 1CF  is from step 1 to step 33 in left branch connecting with the step of 
computing the hash value (marked with red dotted box in Fig. 2) and the linear space of this 
part is }151,0),31,27(|||...||{ 01501 ≤≤=∆=∆∆∆= immmmL∆ i . The basis of 1LD  is as 
follows: 
 

Basis 1: 
0x08000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 2: 
0x10000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 3: 
0x20000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 
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Basis 4: 
0x40000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 5: 
0x80000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Let L
iCV  and R

iCV  denote the inputs of the i-th step of left branch and right branch 
respectively. Then the difference corresponding to LCV25  of ),( 111

LCVMCF δ⊕  and 
),( 11

LCVMCF  is always zero. The backward direction 1
2
−CF  is from step 6 to step 33 in right 

branch and the linear space is }2,150,0),8,4(|||...||{ 21502 ≠≤≤=∆=∆∆∆= iimmmmL∆ i . 
The basis of 2LD  is as follows: 

Basis 1: 
0x00000000, 0x00000000, 0x00000010, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 2: 
0x00000000, 0x00000000, 0x00000020, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 3: 
0x00000000, 0x00000000, 0x00000040, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 4: 
0x00000000, 0x00000000, 0x00000080, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 5: 
0x00000000, 0x00000000, 0x00000100, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

 
The difference corresponding to RCV31  of ),( 62

1
2

RCVMCF δ⊕−  and ),( 6
1

2
RCVMCF −  is 

always zero. The biclique 3CF  covers step 0 in left branch connecting with step 0 to step 5 in 
right branch. It is noted that the initial value IV  is an intermediate value in the bicliques, and 
IV  also affects the last step (marked with red dotted box in Fig. 2), so the truncation mask 
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vector can only be chosen in a smaller scope, e.g., the unchanged bits of IV . Therefore, we 
choose the linear spaces 1LD  and 2LD  as above so that we can get a proper truncation mask 
vector to make sure the error probability of the attack is as small as possible. The schematic 
view of the preimage attack on 34-step RIPEMD-160 is shown in Fig. 2. 

 

 
Fig. 2. Schematic view of the preimage attack on 34-step RIPEMD-160 

 

4.1.2 Construct 3.5-step bicliques 
The bicliques which are constructed for 3CF  cover step 5 to step 0 in right branch connecting 
with step 0 in left branch (which equals to 3.5 steps), such that for all 2121 ),( LDLD ×∈δδ , 

])[,(][ 1621321 δδδδ RL CVMCFCV ⊕⊕= . The parameters used in Section 2.3 are set as 
follows: 1

3CF  covers step 0 in left branch connecting with step 0 to step 2 in right branch and 
2

3CF  covers step 3 to step 5 in right branch, ),,,,( 33333
RRRRR EDCBACV = . For 22 LD∈δ  and 

11 LD∈δ , we can deduce a set of sufficient conditions that make sure )( 2δFT  and )( 1δBT  
hold. Then the bicliques can be constructed by using the biclique search algorithm in Section 
2.3. Note that in the biclique search algorithm, we only set the sufficient conditions in steps 1, 
2 and 3 in right branch. By setting those conditions, a biclique can be obtained in a few 
seconds on a PC. So the complexity of constructing a biclique is negligible. An example of the 
3.5-step bicliques is shown in Table 7. 

 
Table 7. An example of 3.5-step bicliques in RIPEMD-160 

word m0  m2 m5 m7 m9 m14 
value 0x07b30181  0x5effd80e 0xf7962189 0xff1152bb 0xa9bc41d8 0x00000000 
CV6

R A  B C D E  
value 0x8fcfef67  0xc592715e 0x26d8dac7 0x71f4450e 0x6c6740a0  

 

4.1.3 Search for the mask vector and estimate the error probability 
The mask vector is )0,00,0xf80,0,(34 =T . By extensive experiments, the total test number is 

262  and the error probability is about 0.331. The test algorithm is the same as Knellwolf and 
Khovratovich’s Algorithm 3 [7]. 

4.1.4 The attack procedure 
When the bicliques are obtained, we can get ][ 21 δLCV  and ][ 16 δRCV , then compute 

221211 ])[,( ∆⊕⊕= δδ LCVMCFL  and 1161
1

22 ])[,( ∆⊕⊕= − δδ RCVMCFL . )0,( 111 δCF=∆  

and )0,( 2
1

22 δ−=∆ CF , where LCV1 , RCV6 , L
ik  and R

ik  are 0. We need to calculate 6 steps 
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(step 25 to step 33 in left branch add step 31 to step 33 in right branch, which equals to 
2/)39(6 +=  steps) to retest a candidate pseudo-preimage, 34/6ΓΓ re = , and the complexity 

of constructing a biclique is negligible. Thus, the complexity of the pseudo-preimage attack is 
)331.01/()34/61(22 516081.155 −+×≈ − . Furthermore, this attack can be converted to a 

preimage attack (2 message blocks, with padding) with complexity 91.1582 . 

4.2 Preimage attack on 35-step RIPEMD-160 from the second step 

4.2.1 Split the compression function and construct the linear spaces 
The forward direction 1CF  is from step 3 to step 35 in left branch connecting with the step of 
computing the hash value (marked with red dotted box in Fig. 3) and the linear space of this 
part is }2,150,0),31,27(|||...||{ 21501 ≠≤≤=∆=∆∆∆= iimmmmL∆ i . The basis of 1LD  is 
as follows: 
 

Basis 1: 
0x00000000, 0x00000000, 0x08000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 2: 
0x00000000, 0x00000000, 0x10000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 3: 
0x00000000, 0x00000000, 0x20000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 4: 
0x00000000, 0x00000000, 0x40000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 5: 
0x00000000, 0x00000000, 0x80000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

 
The difference corresponding to LCV28  of ),( 311

LCVMCF δ⊕  and ),( 31
LCVMCF  is 

always zero. The backward direction 1
2
−CF  is from step 6 to step 35 in right branch and the 

linear space of this part is }2,150,0),17,13(|||...||{ 21502 ≠≤≤=∆=∆∆∆= iimmmmL∆ i . 
The basis of 2LD  is as follows: 
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Basis 1: 
0x00000000, 0x00000000, 0x00002000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 2: 
0x00000000, 0x00000000, 0x00004000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 3: 
0x00000000, 0x00000000, 0x00008000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 4: 
0x00000000, 0x00000000, 0x00010000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 5: 
0x00000000, 0x00000000, 0x00020000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

 
The difference corresponding to RCV31  of ),( 62

1
2

RCVMCF δ⊕−  and ),( 6
1

2
RCVMCF −  is 

always zero. The biclique 3CF  covers step 1 and step 2 in left branch connecting with step 1 to 
step 5 in right branch. Because the initial value is an intermediate value in the bicliques and 
affects the last step (marked with red dotted box in Fig. 3), the mask vector can only be chosen 
in a small scope, e.g., the unchanged least significant bits of the initial value. Therefore, we 
choose the linear spaces 1LD  and 2LD  as above so that we can get a proper mask vector to 
make the error probability as low as possible. The schematic view of the preimage attack on 
35-step RIPEMD-160 is shown in Fig. 3. 

 

 
Fig. 3. Schematic view of the preimage attack on 35-step RIPEMD-160 

 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 2, February 2018                                   739 

4.2.2 Construct 3.5-step bicliques 
The bicliques which are constructed for 3CF  cover step 5 to step 1 in right branch connecting 
with step 1 to step 2 in left branch (which equals to 3.5 steps), such that for all 

2121 ),( LDLD ×∈δδ , ])[,(][ 1621323 δδδδ RL CVMCFCV ⊕⊕= . The parameters used in 
Section 2.3 are set as follows: 1

3CF  covers step 5 to step 3 in right branch and 2
3CF  covers 

step 2 to step 1 in right branch connecting with step 1 to step 2 in left branch, 
),,,,( 33333

RRRRR EDCBACV = . )( 2δFT  is deduced as follows: 
8))0x3e000())0x3e000()((()0x3e00000( 223 <<<⊕∧⊕=∧ δmAR , 

)0x3e000())0x3e000()(()0x3e000( 223 ⊕∧⊕=∧ δmD R , 

19))0x3e000()(()0x1f( 223 <<<∧⊕=∧ δmE R . 

Condition that satisfies )( 2δFT  is 0x3e000)0x3e000(3 =∧RC . )( 1δBT  is deduced as 
follows: 

4))0xf8000000())0xf8000000()((()0x8000000f( 123 <<<⊕∧⊕=∧ δmB R , 
27))0xf8000000()(()0x7c00000( 123 <<<∧⊕=∧ δmC R , 

)0xf8000000())0xf8000000()(()0xf8000000( 123 ⊕∧⊕=∧ δmC R . 
Conditions that satisfy )( 1δBT  are 0)0x8000000f(3 =∧RA , 0xf8)0xf8(3 =∧RB , ∧RE3  

0xffc00000)0xffc00000( = . 
By setting those conditions, a biclique example can be obtained less than 1 second on a PC. 

So the complexity of constructing a biclique is negligible. An example of the 3.5-step biclique 
is shown in Table 8. Note that to satisfy the padding process, 0x3bf15 =M (the message 
length is 959 = 512 + 447) and the least significant bit of 13M  is set to 1. 

 
Table 8. An example of 3.5-step bicliques in RIPEMD-160 

word m0 m1 m2 m7 m9 m14 
value 0x74a2aec5 0xe84269fa 0xeef5d697 0x4e5f2844 0x7e98f8a9 0x00000000 
CV6

R A B C D E  
value 0x8fbcac5d 0x140846d5 0xdf46e46e 0x18115673 0xee7be4c7  

 

4.2.3 Search for the mask vector and estimate the error probability 
One can check that the 4 least significant bits of RD1  and 2 least significant bits of RE1  are 
unchanged in bicliques and the error probability in these bits are acceptable. So the mask 
vector is )0,00xf,0x2,0,(35 =T . By extensive experiments, the total test number is 302  and the 
error probability is about 0.65. 

4.2.4 The attack procedure 
When the bicliques are obtained, we can get ][ 23 δLCV  and ][ 16 δRCV , then compute 

223211 ])[,( ∆⊕⊕= δδ LCVMCFL  and 1161
1

22 ])[,( ∆⊕⊕= − δδ RCVMCFL . )0,( 111 δCF=∆  

and )0,( 2
1

22 δ−=∆ CF , where LCV3 , RCV6 , L
ik  and R

ik  are 0. We need to calculate 6.5 steps 
(step 28 to step 35 in left branch add step 31 to step 35 in right branch, which equals to 

2/)58(5.6 +=  steps) to retest a candidate pseudo-preimage, 35/5.6 ΓΓ =re , and the 
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complexity of constructing a biclique is negligible. Thus, the complexity of the 
pseudo-preimage attack is )65.01/()35/5.61(22 516075.156 −+×≈ − . Furthermore, this attack 
can be converted to a preimage attack (2 message blocks, with padding) with complexity 

38.1592 . 

4.3 Pseudo-preimage attack on 71-step HAS-160 from the first step 

4.3.1 Split the compression function and construct the linear spaces 
The forward direction 1CF  is from step 59 to step 70 connecting with step 0 to step 20 and the 
linear space of this part is ),28,26(|||...||{ 151211101501 =∆=∆=∆=∆∆∆= mmmmmmL∆  

}15,12,11,10,150,0 ≠≤≤=∆ iimi . The basis of 1LD  is as follows: 
Basis 1: 

0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x04000000, 0x04000000,  
0x04000000, 0x00000000, 0x00000000, 0x04000000 

Basis 2: 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x08000000, 0x08000000,  
0x08000000, 0x00000000, 0x00000000, 0x08000000 

Basis 3: 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x10000000, 0x10000000,  
0x10000000, 0x00000000, 0x00000000, 0x10000000 

Let iCV  denote the input of the i-th step of HAS-160. In this case, the input difference of 
the 13-th step of ),( 5911 CVMCF δ⊕  and ),( 591 CVMCF  is zero. The backward direction 

1
2
−CF  is from step 52 to step 21 and the linear space of this part is 

}15,8,6,3,150,0),31,29(|||...||{ 158631502 ≠≤≤=∆=∆=∆=∆=∆∆∆= iimmmmmmmL∆ i . 
The basis of 2LD  is as follows: 

Basis 1: 
0x00000000, 0x00000000, 0x00000000, 0x20000000,  
0x00000000, 0x00000000, 0x20000000, 0x00000000, 
0x20000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x20000000 

Basis 2: 
0x00000000, 0x00000000, 0x00000000, 0x40000000,  
0x00000000, 0x00000000, 0x40000000, 0x00000000, 
0x40000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x40000000 
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Basis 3: 
0x00000000, 0x00000000, 0x00000000, 0x80000000,  
0x00000000, 0x00000000, 0x80000000, 0x00000000, 
0x80000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x80000000 

 
Obviously, the input difference of the 30-th step of ),( 532

1
2 CVMCF δ⊕−  and ),( 53

1
2 CVMCF −  

is zero. The bicliques 3CF  is from step 53 to step 58, and the schematic view of the 
pseudo-preimage attack on 71-step HAS-160 is shown in Fig. 4. 

 

 
Fig. 4. Schematic view of the pseudo-preimage attack on HAS-160 

 

4.3.2 Construct 6-step bicliques 
The bicliques which are constructed for 3CF  cover step 53 to step 58, such that for all 

2121 ),( LDLD ×∈δδ , ])[,(][ 153213259 δδδδ CVMCFCV ⊕⊕= . The parameters used in 
Section 2.3 are set as follows: 1

3CF  covers step 53 to step 55 and 2
3CF  covers step 56 to step 

58, ),,,,( 5656565656 EDCBACV = . For 22 LD∈δ  and 11 LD∈δ , we can deduce a set of 
sufficient conditions that make sure )( 2δFT  and )( 1δBT  hold. Then the bicliques can be 
constructed by using the biclique search algorithm in Section 2.3. Note that in the biclique 
search algorithm, we only set the sufficient conditions in steps 55, 56 and 57 in right branch. 
By setting those conditions, a biclique can be obtained in a few seconds on a PC. So the 
complexity of constructing a biclique is negligible. An example of the 6-step biclique is shown 
in Table 9. 

 
Table 9. An example of the 6-step bicliques in HAS-160 

word m1 m6 m8 m10 m15 m0 ⊕ m9 ⊕ m2 ⊕ m11 
value 0x33de090e 0x092798cd 0x1f5d84c6 0xe053d3e1 0x00ba96c2 0xdcad415a 
CV53 A B C D E  
value 0x8fc640fe 0xd387c000 0x1dcc8b3b 0xcc96b2a0 0x7cb3634a  

 

4.3.3 Search for the mask vector and estimate the error probability 
The mask vector is )0,0x86,0,0,0(42 =T . By extensive experiments, the total test number is 

262  and the error probability is about 0.429. 

4.3.4 The attack procedure 
When the bicliques are obtained, we can get ][ 259 δCV  and ][ 153 δCV , and compute 

2259211 ])[,( ∆⊕⊕= δδ CVMCFL  and 11531
1

22 ])[,( ∆⊕⊕= − δδ CVMCFL . )0,( 111 δCF=∆  



742                                                                Shen et al.: Improved Preimage Attacks on RIPEMD-160 and HAS-160 

and )0,( 2
1

22 δ−=∆ CF , where 53CV , 59CV  and ik  are 0. We need to calculate 18 steps (step 
12 to step 29) to retest a candidate pseudo-preimage, 71/18ΓΓ =re , and the complexity of 
constructing a biclique is negligible. Thus, the complexity of the pseudo-preimage attack is 

)429.01/()71/181(22 316013.158 −+×≈ − . 

4.4 Preimage attack on 71-step HAS-160 from the seventh step 

4.4.1 Split the compression function and construct the linear spaces 
The forward direction 1CF  is from step 14 to step 42 and the linear space of this part is 

}10,0,150,0),31,27(|||...||{ 1001501 ≠≤≤=∆=∆=∆∆∆= iimmmmmL∆ i . The basis of 1LD  
is as follows: 

Basis 1: 
0x08000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x08000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 2: 
0x10000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x10000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 3: 
0x20000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x20000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 4: 
0x40000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x40000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

Basis 5: 
0x80000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000, 
0x00000000, 0x00000000, 0x80000000, 0x00000000,  
0x00000000, 0x00000000, 0x00000000, 0x00000000 

In this case, the input difference of the 37-th step of ),( 1411 CVMCF δ⊕  and 
),( 141 CVMCF  is zero. The backward direction 1

2
−CF  is from step 7 to step 6 connecting with 

step 76 to step 43 and the linear space of this part is 1261502 |||...||{ mmmmLD D=DDD=  
}12,6,150,0),31,27( ≠≤≤=∆= iimi . The basis of 2LD  is as follows: 
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Basis 1: 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x08000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x08000000, 0x00000000, 0x00000000, 0x00000000 

Basis 2: 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x10000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x10000000, 0x00000000, 0x00000000, 0x00000000 

Basis 3: 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x20000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x20000000, 0x00000000, 0x00000000, 0x00000000 

Basis 4: 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x40000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x40000000, 0x00000000, 0x00000000, 0x00000000 

Basis 5: 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x00000000, 0x00000000, 0x80000000, 0x00000000, 
0x00000000, 0x00000000, 0x00000000, 0x00000000,  
0x80000000, 0x00000000, 0x00000000, 0x00000000 

Obviously, the input difference of the 54-th step of ),( 82
1

2 CVMCF δ⊕−  and ),( 8
1

2 CVMCF −   
is zero. The bicliques 3CF  is from step 8 to step 13, and the schematic view of the preimage 
attack on 71-step HAS-160 is shown in Fig. 5. 

 

 
Fig. 5. Schematic view of the preimage attack on HAS-160 

 

4.4.2 Construct 6-step bicliques 
The bicliques which are constructed for 3CF  cover step 8 to step 13, such that for all 

2121 ),( LDLD ×∈δδ , ])[,(][ 11421328 δδδδ CVMCFCV ⊕⊕= . The parameters used in 
Section 2.3 are set as follows: 1

3CF  covers step 8 to step 10 and 2
3CF  covers step 11 to step 13, 

),,,,( 1111111111 EDCBACV = . )( 2δFT  is deduced as follows: 
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21))0xf8000000()(()0x1f0000( 2611 <<<∧⊕=∧ δmA , 
12))0xf8000000()(()0xf80( 2611 <<<∧⊕=∧ δmB , 
10))0xf8000000()(()0x3e0( 2611 <<<∧⊕=∧ δmC . 

Condition that satisfies )( 2δFT  is )0xf8000000()0xf8000000( 1111 ∧=∧ ED . )( 1δBT  is 
deduced as follows: 

)0xf8000000())0xf8000000()(()0xf8000000( 1011 ⊕∧⊕=∧ δmC . 
Conditions that satisfy )( 1δBT are 0000xf8000)0xf8000000(11 =∧A , )0xf8000000(11 ∧B  = 
0. Extra condition is )0xf8000000()()0xf8000000( 321 ∧⊕=∧ mmm . By setting those 
conditions, a biclique example can be obtained with probability 1. So the complexity of 
constructing a biclique is negligible. An example of the 6-step biclique is shown in Table 10. 

 
Table 10. An example of the 6-step bicliques in HAS-160 

word m6 m7 m0 ⊕ m1 ⊕ m2 ⊕ m3 m8 m9 m10 
value 0x49c1e50b 0x6c67d9a3 0x63a5dd43 0xd8b52f39 0xbef4c8f3 0x39b89099 
CV8 A B C D E  

value 0x8f7b70f3 0x873ae2a1 0x19f7ee05 0xf467e82d 0xd3fe5704  
 

4.4.3 Search for the mask vector and estimate the error probability 
The mask vector is )0x2,00x180,0x3,,0(42 =T . By extensive experiments, the total test 
number is 302  and the error probability is about 0.35. 

4.4.4 The attack procedure 
When the bicliques are obtained, we can get ][ 28 δCV  and ][ 114 δCV , and compute 

2214211 ])[,( ∆⊕⊕= δδ CVMCFL  and 1181
1

22 ])[,( ∆⊕⊕= − δδ CVMCFL . )0,( 111 δCF=∆  

and )0,( 2
1

22 δ−=∆ CF , where 8CV , 14CV  and ik  0. We need to calculate 17 steps (step 37 to 
step 53) to retest a candidate pseudo-preimage, 71/17ΓΓ =re , and the complexity of 
constructing a biclique is negligible. Thus, the complexity of the pseudo-preimage attack is 

)35.01/()71/171(22 516093.155 −+×≈ − . Furthermore, this attack can be converted to a 
preimage attack (2 message blocks, with padding) with complexity 97.1582 . 

5. Conclusion 
In this paper, a preimage attack on 34-step RIPEMD-160 with message padding and a 
pseudo-preimage attack on 71-step HAS-160 without message padding are proposed. The 
former holds with a complexity of 91.1582 , the latter holds with a complexity of 13.1582 . 
Furthermore, we locate the linear spaces in another message words and exchange the bicliques 
construction process and the mask vector search process. A preimage attack on 35-step 
RIPEMD-160 with complexity 38.1592  and a preimage attack on 71-step HAS-160 with 
complexity 97.1582  are obtained. Both of the attacks satisfy the message padding. Future 
analysis should be able to explore how to construct bicliques including more steps so that 
preimage attacks can be implemented on more steps of hash functions. 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 2, February 2018                                   745 

References 
[1] Xiaoyun Wang and Hongbo Yu, “How to break MD5 and other hash functions,” in Proc. of the 

24th Annual International Conference on the Theory and Applications of Cryptographic 
Techniques, pp. 19-35, May 22-26, 2005. Article (CrossRef Link) 

[2] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet and William Jalby, 
“Collisions of SHA-0 and reduced SHA-1,” in Proc. of the 24th Annual International Conference 
on the Theory and Applications of Cryptographic Techniques, pp. 36-57, May 22-26, 2005.  
Article (CrossRef Link) 

[3] Xiaoyun Wang, Yiqun Lisa Yin and Hongbo Yu, “Finding collisions in the full SHA-1,” in Proc. 
of the 25th Annual International Cryptology Conference, pp. 17-36, August 14-18, 2005.  
Article (CrossRef Link) 

[4] Kazumaro Aoki and Yu Sasaki, “Preimage attacks on one-block MD4, 63-step MD5 and more,” in 
Proc. of the 15th International Workshop on Selected Areas in Cryptography, pp. 103-119, August 
14-15, 2008. Article (CrossRef Link) 

[5] Deukjo Hong, Bonwook Koo and Yu Sasaki, “Improved preimage attack for 68-step HAS-160,” in 
Proc. of the 12th International Conference on Information Security and Cryptology, pp. 332-348, 
December 2-4, 2009. Article (CrossRef Link) 

[6] Dmitry Khovratovich, Christian Rechberger and Alexandra Savelieva, “Bicliques for preimages: 
Attacks on Skein-512 and the SHA-2 family,” in Proc. of the 19th International Workshop on Fast 
Software Encryption, pp. 244-263, March 19-21, 2012. Article (CrossRef Link) 

[7] Simon Knellwolf and Dmitry Khovratovich, “New preimage attacks against reduced SHA-1,” in 
Proc. of the 32nd Annual Cryptology Conference, pp. 367-383, August 19-23, 2012.  
Article (CrossRef Link) 

[8] Chiaki Ohtahara, Yu Sasaki and Takeshi Shimoyama, “Preimage attacks on step-reduced 
RIPEMD-128 and RIPEMD-160,” in Proc. of the 6th International Conference on Information 
Security and Cryptology, pp. 169-186, October 20-24, 2010. Article (CrossRef Link) 

[9] Yu Sasaki and Kazumaro Aoki, “A preimage attack for 52-step HAS-160,” in Proc. of the 11th 
International Conference on Information Security and Cryptology, pp. 302-317, December 3-5, 
2008. Article (CrossRef Link) 

[10] Yu Sasaki and Kazumaro Aoki, “Finding preimages in full MD5 faster than exhaustive search,” in 
Proc. of the 28th Annual International Conference on the Theory and Applications of 
Cryptographic Techniques, pp. 134-152, April 26-30, 2009. Article (CrossRef Link) 

[11] Jian Guo, San Ling, Christian Rechberger and Huaxiong Wang, “Advanced meet-in-the-middle 
preimage attacks: First results on full Tiger, and improved results on MD4 and SHA-2,” in Proc. of 
the 16th International Conference on the Theory and Application of Cryptology and Information 
Security, pp. 56-75, December 5-9, 2010. Article (CrossRef Link) 

[12] Whitfield Diffie and Martin E. Hellman, “Exhaustive cryptanalysis of the NBS data encryption 
standard,” Computer, vol. 10, no. 6, pp. 74-84, 1977. Article (CrossRef Link) 

[13] Thomas Espitau, Pierre-Alain Fouque and Pierre Karpman, “Higher-order differential 
meet-in-the-middle preimage attacks on SHA-1 and BLAKE,” in Proc. of the 35th Annual 
Cryptology Conference, pp. 683-701, August 16-20, 2015. Article (CrossRef Link) 

[14] Hans Dobbertin, Antoon Bosselaers and Bart Preneel, “RIPEMD-160: A strengthened version of 
RIPEMD,” in Proc. of the 3rd International Workshop on Fast Software Encryption, pp. 71-82, 
February 21–23 1996. Article (CrossRef Link) 

[15] International Organization for Standardization, “Information technology - Security techniques - 
Hash-functions - Part 3: Dedicated hash functions (2004),” ISO/IEC 10118-3:2004,  
Article (CrossRef Link). 

[16] Florian Mendel, Norbert Pramstaller, Christian Rechberger and Vincent Rijmen, “On the collision 
resistance of RIPEMD-160,” in Proc. of the 9th International Conference on Information Security, 
pp. 101-116, August 30 - September 2, 2006. Article (CrossRef Link) 

[17] Florian Mendel, Tomislav Nad, Stefan Scherz and Martin Schläffer, “Differential attacks on 
reduced RIPEMD-160,” in Proc. of the 15th International Conference on Information Security, pp. 

https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11426639_3
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/978-3-642-04159-4_7
https://doi.org/10.1007/978-3-642-14423-3_22
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-3-642-32009-5_22
https://doi.org/10.1007/978-3-642-21518-6_13
https://doi.org/10.1007/978-3-642-00730-9_19
https://doi.org/10.1007/978-3-642-01001-9_8
https://doi.org/10.1007/978-3-642-17373-8_4
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1007/978-3-662-47989-6_33
https://doi.org/10.1007/3-540-60865-6_44
https://www.iso.org/standard/39876.html
https://doi.org/10.1007/11836810_8


746                                                                Shen et al.: Improved Preimage Attacks on RIPEMD-160 and HAS-160 

23-38, September 19-21, 2012. Article (CrossRef Link) 
[18] Florian Mendel, Thomas Peyrin, Martin Schläffer, Lei Wang and Shuang Wu, “Improved 

cryptanalysis of reduced RIPEMD-160,” in Proc. of the 19th International Conference on the 
Theory and Application of Cryptology and Information Security, pp. 484-503, December 1-5, 2013. 
Article (CrossRef Link) 

[19] Yu Sasaki and Lei Wang, “Distinguishers beyond three rounds of the RIPEMD-128/-160 
compression functions,” in Proc. of the 10th International Conference on Applied Cryptography 
and Network Security, pp. 275-292, June 26-29, 2012. Article (CrossRef Link) 

[20] Telecommunications Technology Association, “Hash Function Standard Part 2: Hash Function 
Algorithm Standard, HAS-160 (2000),” TTAS.KO-12.0011/R2. Article (CrossRef Link). 

[21] Aaram Yun, Soo Hak Sung, Sangwoo Park, Donghoon Chang, Seokhie Hong and Hong-Su Cho, 
“Finding collision on 45-step HAS-160,” in Proc. of the 8th International Conference on 
Information Security and Cryptology, pp. 146-155, December 1-2, 2005. Article (CrossRef Link) 

[22] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen and Xiuyuan Yu, “Cryptanalysis of the hash 
functions MD4 and RIPEMD,” in Proc. of the 24th Annual International Conference on the 
Theory and Applications of Cryptographic Techniques, pp. 1-18, May 22-26, 2005.  
Article (CrossRef Link) 

[23] Hong-Su Cho, Sangwoo Park, Soo Hak Sung and Aaram Yun, “Collision search attack for 53-step 
HAS-160,” in Proc. of the 9th International Conference on Information Security and Cryptology, 
pp. 286-295, November 30 - December 1, 2006. Article (CrossRef Link) 

[24] Florian Mendel and Vincent Rijmen, “Colliding message pair for 53-step HAS-160,” in Proc. of 
the 10th International Conference on Information Security and Cryptology, pp. 324-334, 
November 29-30, 2007. Article (CrossRef Link) 

[25] Florian Mendel, Tomislav Nad and Martin Schläffer, “Cryptanalysis of round-reduced HAS-160,” 
in Proc. of the 14th International Conference on Information Security and Cryptology, pp. 33-47, 
November 30 - December 2, 2011. Article (CrossRef Link) 

[26] Aleksandar Kircanski, Riham AlTawy and Amr M. Youssef, “Heuristic for finding compatible 
differential paths with application to HAS-160,” in Proc. of the 19th International Conference on 
the Theory and Application of Cryptology and Information Security, pp. 464-483, December 1-5, 
2013. Article (CrossRef Link) 

[27] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied 
Cryptography, CRC Press, 1996. 

 
 

 
Yanzhao Shen received the B.S. degree in School of Computer and Information 
Engineering form Henan University, Kaifeng, China, M.S. in School of Computer Science 
and Technology from Donghua University, Shanghai, China. Now he is a Ph.D student in 
School of Mathematics, Shandong University. His current research interests include 
cryptography, computer and network security. 
 
 
 
 
 
Gaoli Wang received the B.S. degree in Fundamental Mathematics from Shandong 
University, Jinan, China, M.S. and Ph.D degree in Information Security from Shandong 
University, Jinan, China. She is currently an assistant professor at School of Computer 
Science and Software Engineering, East China Normal University. Her research interests 
include cryptography, computer and network security. 

https://doi.org/10.1007/978-3-642-33383-5_2
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/978-3-642-31284-7_17
http://www.tta.or.kr/English/%20new/standardization/eng/_ttastddesc.jsp?stdno=TTAS.KO-12.0011/R2
https://doi.org/10.1007/11734727_13
https://doi.org/10.1007/11426639_1
https://doi.org/10.1007/11927587_24
https://doi.org/10.1007/978-3-540-76788-6_26
https://doi.org/10.1007/978-3-642-31912-9_3
https://doi.org/10.1007/978-3-642-42045-0_24

