참고문헌
- Baulcombe, D. 2004. RNA silencing in plants. Nature 431:356-363. https://doi.org/10.1038/nature02874
- Black, L. L., Hobbs, H. A. and Gatti, J. M. 1991. Tomato spotted wilt virus resistance in Capsicum chinense PI152225 and 159236. Plant Dis. 75:863.
- Black, L. L., Hobbs, H. A. and Kammerlohr, D. S. 1996. Resistance of Capsicum chinense lines to tomato spotted wilt virus from Louisiana, USA, and inheritance of resistance. Acta Hortic. 431:393-401.
- Boiteux, L. S. 1995. Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theor. Appl. Genet. 90:146-149.
- Brittlebank, C. C. 1919. Tomato diseases. J. Agr., Victoria, Australia 17:213-235.
- Canto, T. and Palukaitis, P. 2001. A cucumber mosaic virus (CMV) RNA 1 transgene mediates suppression of the homologous viral RNA 1 constitutively and prevents CMV entry into the phloem. J. Virol. 75:9114-9120. https://doi.org/10.1128/JVI.75.19.9114-9120.2001
- Chung, B. N., Choi, H. S., Yang, E. Y. Cho, J. D., Cho, I. S., Choi, G. S. and Choi, S. K. 2012. Tomato spotted wilt virus isolates giving different infection in Commercial Capsicum annuum cultivars. Plant Pathol. J. 28:87-92. https://doi.org/10.5423/PPJ.NT.09.2011.0169
- Chung, B. N., Pak, H. S., Jung, J. A. and Kim, J. S. 2006. Occurrence of Tomato spotted wilt virus in Chrysanthemum (Dendranthema grandiflorum) in Korea. Plant Pathol. J. 22:230-234. https://doi.org/10.5423/PPJ.2006.22.3.230
- Chung, B. N., Tomas, C., Franscico, T., Choi, K. S., Joa, J. H., Ahn, J. J., Kim, C. H. and Do, K. S. 2016. The effects of high temperature on infection by Potato virus Y, Potato virus A, and Potato leafroll virus. Plant Pathol. J. 32:321-328. https://doi.org/10.5423/PPJ.OA.12.2015.0259
- Dufour, O., Palloix, A., Gebre Selassie, K., Pochard, E. and Marchoux, G. 1989. The distribution of cucumber mosaic virus in resistant and susceptible plants of pepper. Can. J. Bot. 67:655-660. https://doi.org/10.1139/b89-088
- Gao, Y., Lei, Z. and Reitz, S. R. 2012. Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manag. Sci. 68:1111-1121. https://doi.org/10.1002/ps.3305
- Ghoshal, B. and Sanfacon, H. 2014. Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires ARGONAUTE1. Virology 456-457:188-197. https://doi.org/10.1016/j.virol.2014.03.026
- Gibbs, A. J. 1983. Tomato spotted wilt tospovirus. Plant viruses online: descriptions and lists from the VIDE Database.
- IPCC. 2014. Climate change 2014: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom / NY, USA. 996 pp.
- Jones, R. A. 2009. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141:113-130. https://doi.org/10.1016/j.virusres.2008.07.028
- Kim, J. H., Choi, G. S., Kim, J. S. and Choi, C. K. 2004. Characterization of Tomato spotted wilt virus from paprika in Korea. Plant Pathol. J. 20:297-301. https://doi.org/10.5423/PPJ.2004.20.4.297
- Macdiarmid, R. 2005. RNA silencing in productive virus infection. Annu. Rev. Phytopathol. 43:523-544. https://doi.org/10.1146/annurev.phyto.43.040204.140204
- Makkouk, K. M. and Kumari, S. G. 1993. Movement of bean yellow mosaic virus in susceptible and resistant faba bean genotypes. Fabis Newsletter 32:35-37.
- Moury, B., Palloix, A., Selassie-Gebre, K. and Marchoux, G. 1997. Hypersensitive resistance to tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 94:45-52. https://doi.org/10.1023/A:1002997522379
- Moury, B., Selassie-Gebre, K., Marchoux, G., Daubeze, A. M. and Palloix, A. 1998. High temperature effects on hypersensitive resistance to tomato spotted wilt tospovirus (TSWV) in pepper (Capsicum chinense Jacq.). Euro. J. Plant Pathol. 104:489-498. https://doi.org/10.1023/A:1008618022144
- Myers, L. D., Sherwood, J. L., Siegerist, W. C. and Hunger, R. M. 1993. Temperature-influenced virus movement in expression of resistance to soilborne wheat mosaic virus in hard red winter wheat (Triticum aestivum). Phytopathology 83:548-551. https://doi.org/10.1094/Phyto-83-548
- Pennazio, S. 1995. The hypersensitive reaction of higher plants to viruses: A molecular approach. Microbiologica 18:229-240.
- Resende, R. de O., de Haan, P., de Avila, A. C., Kitajima, E. W., Kormelink, R., Goldbach, R. and Peters, D. 1991. Generation of envelope and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. J. Gen. Virol. 72:2375-2383. https://doi.org/10.1099/0022-1317-72-10-2375
- Roggero, P., Lisa, V., Nervo, G. and Pennazio, S. 1996. Continuous high temperature can break the hypersensitivity of Capsicum chinense 'PI152225' to tomato spotted wilt tospovirus (TSWV). Phytopathologia Mediterranea 35:117-120.
- Rosello, S., Diez, M. J. and Nuez, F. 1997. Utilization of Capsicum sp. resistance to TSWV in pepper breeding. Capsicum and Eggplant Newsletters 16:87-90.
- Samuel, G., Bald, J. G. and Pittman, H. A. 1930. Investigation on 'spotted wilt' of tomatoes. Aust. Council Sci. Ind. Res. Bull. 44:64.
- Soler, S., Diez, M. J. and Nuez, F. 1998. Effect of temperature regime and growth stage interaction on pattern of virus presence in TSWV-resistant accessions of Capsicum chinense. Plant Dis. 82:1199-1204. https://doi.org/10.1094/PDIS.1998.82.11.1199
- Solymosy, F. 1970. Biochemical aspects of hypersensitivity to virus infection in plants. Acta Phytopathol. Acad. Sci. Hung. 5:55-63.
- Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L., Banfalvi, Z. and Burgyan, J. 2003. Low temperature inhibits RNA silencing-mediated defense by the control of siRNA generation. EMBO J. 22:633-640. https://doi.org/10.1093/emboj/cdg74
- Taliansky, M., Aranda, M. A. and Garciaarenal, F. 1994. Differential invasion by tobamoviruses of Nictiana megalosiphon following the hypersensitive response. Phytopathology 84:812-815. https://doi.org/10.1094/Phyto-84-812
-
Weststeijn, E. A. 1984. Evidence for a necrosis-inducing factor in tobacco mosaic virus-infected Nicotiana tabacum cv. Xanthinc grown at
$22^{\circ}C$ but not at$32^{\circ}C$ . Physiol. Plant Pathol. 25:83-91. https://doi.org/10.1016/0048-4059(84)90019-5 - Zhu, Y., Qian, W. and Hua, J. 2010. Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog. 6:e1000844. https://doi.org/10.1371/journal.ppat.1000844