FIGURE 1. Dumbbell graph Da,b,n
FIGURE 2. Dumbbell graph D1,1,n
FIGURE 3. Dumbbell graph D1,2,n
참고문헌
- H. Bass, The Ihara-Selberg zeta function of a tree lattice, International. J. Math. 3 (1992), 717-797. https://doi.org/10.1142/S0129167X92000357
- M. D. Horton, H. M. Stark, and A. Terras, What are zeta functions of graphs and what are they good for ?, Contemporary Mathematics 415 (2006), Quantum Graphs and Their Applications; Edited by Gregory Berkolaiko, Robert Carlson, Stephen A. Fulling, and Peter Kuchment, 173-190.
- Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235. https://doi.org/10.2969/jmsj/01830219
- M. Kotani and T. Sunada, Zeta function of finite graphs, J. Math. Sci. Univ. Tokyo 7 (2000), 7-25.
- A. Terras, Zeta functions of graphs: a stroll through the garden, CambridgeX Studies in Advanced Mathematics, Vol. 128, Cambridge University Press, Cambridge, 2011, xii+239 pp
피인용 문헌
- IHARA ZETA FUNCTION OF FINITE GRAPHS WITH CIRCUIT RANK TWO vol.28, pp.1, 2018, https://doi.org/10.11568/kjm.2020.28.1.123