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RELATIVE ORDER AND RELATIVE TYPE BASED

GROWTH PROPERTIES OF ITERATED P ADIC

ENTIRE FUNCTIONS

Tanmay Biswas

Abstract. Let us suppose that K be a complete ultrametric alge-
braically closed field and A (K) be the K-algebra of entire functions
on K. The main aim of this paper is to study some newly developed
results related to the growth rates of iterated p-adic entire functions
on the basis of their relative orders, relative type and relative weak
type.

1. Introduction and Definitions.

Let us consider K be an algebraically closed field of characteristic 0,
complete with respect to a p-adic absolute value |·| (example Cp) . For
any α ∈ K and R ∈]0,+∞[, the closed disk {x ∈ K : |x−α| ≤ R} and the
open disk {x ∈ K : |x − α| < R} are denoted by d (α,R) and d (α,R−)
respectively. Also C(α, r) denotes the circle {x ∈ K : |x − α| = r}.
Moreover A (K) represent the K-algebra of analytic functions in K i.e.
the set of power series with an infinite radius of convergence. For the
most comprehensive study of analytic functions inside a disk or in the
whole field K, we refer the reader to the books [12, 13, 18, 20]. During
the last several years the ideas of p-adic analysis have been studied
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from different aspects and many important results were gained (see [2]
to [11], [14–17,21]).

Let f ∈ A (K) and r > 0, then we denote by |f | (r) the number
sup {|f (x) |||x| = r} where |·| (r) is a multiplicative norm onA (K) . Sim-

ilarly for the entire function g ∈ A (K) , |g| (r) is defined. The ratio |f |(r)|g|(r)
as r → ∞ is called the growth of f with respect to g in terms of their
multiplicative norm on A (K).

However, if f ∈ A (K) is not a constant, the |f | (r) is strictly in-
creasing function of r and tends to +∞ with r therefore there exists its

inverse function |̂f | : (|f (0)| ,∞)→ (0,∞) with lim
s→∞
|̂f | (s) =∞.

Throughout the paper, log denotes the Neperian logarithm. Taking
this into account the order (resp. lower order) of an entire function
f ∈ A (K) is given by (see [5])

ρ (f)
λ (f)

= lim
r→+∞

sup
inf

log (log |f | (r))
log r

.

The function f ∈ A (K) is said to be of regular growth when order
and lower order of f are the same. Functions which are not of regular
growth are said to be of irregular growth.

Boussaf et al. [5] also introduce the definition of type (resp. lower
type) of an entire function f ∈ A (K) which is also another type of
growth indicator used for comparing the relative growth of two entire
functions defined in A (K) having same non-zero finite order in the fol-
lowing way:

σ (f)
σ (f)

= lim
r→+∞

sup
inf

log |f | (r)
rρ(f)

where 0 < ρf <∞.

Analogously for 0 < λf < ∞, one may give the definition of weak
type τf and the growth indicator τ f of an entire function f ∈ A (K) in
the following way:

τ (f)
τ (f)

= lim
r→+∞

sup
inf

log |f | (r)
rλ(f)

.

However the notion of relative order was first introduced by Bernal [1].
In order to make some progress in the study of p-adic analysis, recently
Biswas [9] introduce the definition of relative order and relative lower
order of entire function f ∈ A (K) with respect to another entire function
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g ∈ A (K) in the following way:

ρg (f)
λg (f)

= lim
r→+∞

sup
inf

log |̂g| (|f | (r))
log r

.

Further the function f ∈ A (K) , for which relative order and relative
lower order with respect to another function g ∈ A (K) are the same is
called a function of regular relative growth with respect to g. Otherwise,
f is said to be irregular relative growth.with respect to g.

Next, we introduce the notion of relative type and relative lower type
f ∈ A (K) with respect to g ∈ A (K) in the following manner in order
to compare the relative growth of two p-adic entire functions having
same non-zero finite relative order with respect to another p-adic entire
function :

Definition 1. Let f, g ∈ A (K) be such that 0 < ρg (f) <∞. Then
the relative type σg (f) and relative lower type σg (f) of f with respect
to g are defined as:

σg (f)
σg (f)

= lim
r→+∞

sup
inf
|̂g| (|f | (r))
rρg(f)

.

Likewise, to determine the relative growth of two p-adic entire func-
tions having same non-zero finite relative lower order with respect to
another p-adic entire function, one may introduce the concept of rela-
tive weak type in the following way:

Definition 2. Let f, g ∈ A (K) be such that 0 < λg (f) <∞. Then
the relative -weak type τg (f) of f with respect to g is defined as:

τg (f) = lim
r+∞

|̂g| (|f | (r))
rλg(f)

.

Analogously, one can define the growth indicator τ g (f) of f with
respect to g with finite positive relative lower order λg (f) as

τ g (f) = lim
r→+∞

|̂g| (|f | (r))
rλg(f)

.

Now in the line of Lahiri and Banerjee [19], one may introduce the
concept of the iteration of f with respect to g where f, g ∈ A (K) in the
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following manner:

f (x) = f1 (x)

f (g (x)) = f (g1 (x)) = f2 (x)

f (g (f (x))) = f (g (f1 (x))) = f (g2 (x)) = f3 (x)

....... ........... ............. ..........

....... ........... ............. ..........

f (g (f......... (f (x) or g (x)) ..........)) = fn (x) , according as n is odd or even,

and so

g (x) = g1 (x)

g (f (x)) = g (f1 (x)) = g2 (x)

g (f (g (x))) = g (f (g1 (x))) = g (f2 (x)) = g3 (x)

....... ........... ............. ..........

....... ........... ............. ..........

g (f (gn−2 (x))) = g (fn−1 (x)) = gn (x) .

Clearly all fn ∈ A (K) and gn ∈ A (K).

Likewise for any two non constant entire functions h, k ∈ A (K), we

may define the iteration of |̂h| (r) with respect to |̂k| (r) in the following
manner:

|̂h| (r) = |̂h1| (r)

|̂k|
(
|̂h| (r)

)
= |̂k|

(
|̂h1| (r)

)
= |̂h2| (r)

|̂h|
(
|̂k|
(
|̂h| (r)

))
= |̂h|

(
|̂h2| (r)

)
= |̂h3| (r)

....... ........... ............. ..........

....... ........... ............. ..........

|̂h|
(
.........

(
|̂h|
(
|̂k|
(
|̂h| (r)

))))
= |̂hn| (r) ,

when n is odd,

and

|̂k|
(
.........

(
|̂h|
(
|̂k|
(
|̂h| (r)

))))
= |̂hn| (r) ,

when n is even .

Obviously |̂hn| (r) is an increasing functions of r.
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The main aim of this paper is to establish some newly developed
results related to the growth rates of composite p-adic entire functions
on the basis of their relative orders, relative type and relative weak type.

2. Lemmas

In this section we present some lemmas which will be needed in the
sequel.

The following lemma due to A. Escassut [12] which can also be found
in [5] or [7].

Lemma 1. [12] Let f, g ∈ A (K) . Then for all sufficiently large values
of r,

|f ◦ g| (r) = |f | (|g| (r)) .

Lemma 2. Let f (x) =
+∞∑
n=0

anx
n ∈ A (K). Then for any positive

integer m > 1,

(|f | (r))m ≤ |f | (rm) .

Proof. Since f (x) =
+∞∑
n=0

anx
n ∈ A (K) . Then for all r > 0 we have

|f | (r) = sup
n≥0
|an|rn. So we obtain that

(1) (|f | (r))m = sup
n≥0
|an|mrmn .

Further, we get that

(2) |f | (rm) = sup
n≥0
|an|rmn .

As we take the supremum value for large r, therefore n 6= 0 and |an| ≤ 1.
Hence the lemma follows from (1) and (2).

Lemma 3. Let f , g, h, k ∈ A (K). Then for all sufficiently large
values of r,

(i) |̂hn| (|fn| (r)) ≤ |̂k|
(
|g|
(
rδ
))

when n is even
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where



(a) δ = mn−1 wherever m is least positive integer with
1 ≤ min {ρh (f) , ρk (g)} ≤ max {ρh (f) , ρk (g)} < m;

(b) δ = m
n
2
−1 wherever m is least positive integer with

0 < ρh (f) < 1 ≤ ρk (g) < m;

(c) δ = m
n
2 wherever m is least positive integer with

0 < ρk (g) < 1 ≤ ρh (f) < m;

(d) δ = 1 while 0 < max {ρh (f) , ρk (g)} < 1;

and

(ii) |̂hn| (|fn| (r)) ≤ |̂h|
(
|f |
(
rδ
))

when n (n 6= 1) is odd

where



(a) δ = mn−1 wherever m is least positive integer with
1 ≤ min {ρh (f) , ρk (g)} ≤ max {ρh (f) , ρk (g)} < m;

(b) δ = m
n−1
2 wherever m is least positive integer with

0 < ρh (f) < 1 ≤ ρk (g) < m;

(c) δ = m
n−1
2 wherever m is least positive integer with

0 < ρk (g) < 1 ≤ ρh (f) < m;

(d) δ = 1 while 0 < max {ρh (f) , ρk (g)} < 1 .

Proof. Case I. Let 1 ≤ min {ρh (f) , ρk (g)} ≤ max {ρh (f) , ρk (g)} <
∞. Now we consider that m is least positive integer such that 1 ≤
min {ρh (f) , ρk (g)} ≤max {ρh (f) , ρk (g)}<m.Also suppose that ρh (f)+
ε < m and ρk (g) + ε < m respectively where ε (> 0) is arbitrary. Now
in view of Lemma 1, Lemma 2 and for any even integer n, we get for all
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sufficiently large values of r that

|fn| (r) = |f | (|gn−1| (r))
i.e., |̂h| (|fn| (r)) = |̂h| (|f | (|gn−1| (r)))
i.e., |̂h| (|fn| (r)) ≤ (|gn−1| (r))(ρh(f)+ε)(3)

i.e., |̂h| (|fn| (r)) ≤ (|gn−1| (r))m

i.e., |̂h| (|fn| (r)) ≤ |g| (|fn−2| (rm))

i.e., |̂h2| (|fn| (r)) ≤ |̂k| (|g| (|fn−2| (rm)))

i.e., |̂h2| (|fn| (r)) ≤ (|fn−2| (rm))(ρk(g)+ε)

i.e., |̂h2| (|fn| (r)) ≤ (|fn−2| (rm))m

i.e., |̂h2| (|fn| (r)) ≤ |fn−2|
(
rm

2
)
,

....... ........... ............. ..........

....... ........... ............. ..........

Therefore

|̂hn| (|fn| (r)) ≤ |̂k|
(
|g|
(
rm

n−1
))

when n is even .

Similarly,

|̂hn| (|fn| (r)) ≤ |̂h|
(
|f |
(
rm

n−1
))

when n is odd and n 6= 1 .

Thus (i) (a) and (ii) (a) of lemma are proved.
Case II. Let 0 < min {ρh (f) , ρk (g)} < 1 ≤ max {ρh (f) , ρk (g)} <

∞.
Sub case (A). Let 0 < ρh (f) < 1 ≤ ρk (g) < ∞. Now we consider

that m is least positive integer such that 0 < ρh (f) < 1 ≤ ρk (g) < m.
Also suppose that ρh (f) + ε < 1 and ρk (g) + ε < m respectively where
ε (> 0) is arbitrary. Now in view of Lemma 1, Lemma 2 and for any
even integer n, we get from (3) for all sufficiently large values of r that

|̂h| (|fn| (r)) ≤ (|gn−1| (r))
i.e., |̂h| (|fn| (r)) ≤ |g| (|fn−2| (r))
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i.e., |̂h2| (|fn| (r)) ≤ |̂k| (|g| (|fn−2| (r)))
i.e., |̂h2| (|fn| (r)) ≤ (|fn−2| (r))(ρk(g)+ε)

i.e., |̂h2| (|fn| (r)) ≤ (|fn−2| (r))m

i.e., |̂h2| (|fn| (r)) ≤ |fn−2| (rm)

....... ........... ............. ..........

....... ........... ............. ..........

Therefore

|̂hn| (|fn| (r)) ≤ |̂k|
(
|g|
(
rm

n
2 −1
))

when n is even .

Similarly,

|̂hn| (|fn| (r)) ≤ |̂h|
(
|f |
(
rm

n−1
2

))
when n is odd and n 6= 1 .

Thus (i) (b) and (ii) (b) of lemma are proved.
Sub case (B). Let 0 < ρk (g) < 1 ≤ ρh (f) < ∞. Now we consider

that m is least positive integer such that 0 < ρk (g) < 1 ≤ ρh (f) < m.
Also suppose that ρk (g) + ε < 1 and ρh (f) + ε < m respectively where
ε (> 0) is arbitrary. Now in view of Lemma 1, Lemma 2 and for any
even integer n, we get from (3) for all sufficiently large values of r that

|̂h| (|fn| (r)) ≤ (|gn−1| (r))m

i.e., |̂h| (|fn| (r)) ≤ |g| (|fn−2| (rm))

i.e., |̂h2| (|fn| (r)) ≤ |̂k| (|g| (|fn−2| (rm)))

i.e., |̂h2| (|fn| (r)) ≤ (|fn−2| (rm))(ρk(g)+ε)

i.e., |̂h2| (|fn| (r)) ≤ (|fn−2| (rm))

....... ........... ............. ..........

....... ........... ............. ..........

Therefore

|̂hn| (|fn| (r)) ≤ |̂k|
(
|g|
(
rm

n
2

))
when n is even .

Similarly,

|̂hn| (|fn| (r)) ≤ |̂h|
(
|f |
(
r
n−1
2

))
when n is odd and n 6= 1 .
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Hence (i) (c) and (ii) (c) of lemma are established.
Case III. Let 0 < max {ρh (f) , ρk (g)} < 1. In this case we can

choose an arbitrary ε(> 0) in such a manner so that ρh (f) + ε < 1 and
ρk (g)+ε < 1 hold. Now reasoning similarly as in the proof stated above
one can easily deduce the conclusion of (i) (d) and (ii) (d) of lemma, so
its proof is omitted.

This completes the proof of the lemma.

Lemma 4. Let f , g, h, k ∈ A (K). Then for all sufficiently large
values of r,

(i) |̂hn| (|fn| (r)) ≥ |̂k|
(
|g|
(
r

1
δ

))
when n is even,

where

(a) δ = mn−1 wherever m is least positive integer with
1
m
< min {λh (f) , λk (g)} ≤ max {λh (f) , λk (g)} < 1;

(b) δ = m
n
2
−1 wherever m is least positive integer with

1
m
< λk (g) ≤ 1 < λh (f) <∞;

(c) δ = m
n
2 wherever m is least positive integer with

1
m
< λh (f) ≤ 1 < λk (g) <∞;

(d) δ = 1 while 1 < min {λh (f) , λk (g)} <∞ .

and

(ii) |̂hn| (|fn| (r)) ≥ |̂h|
(
|f |
(
r

1
δ

))
when n (n 6= 1) is odd

where

(a) δ = mn−1 wherever m is least positive integer with
1
m
< min {λh (f) , λk (g)} ≤ max {λh (f) , λk (g)} < 1;

(b) δ = m
n−1
2 wherever m is least positive integer with

1
m
< λk (g) ≤ 1 < λh (f) <∞;

(c) δ = m
n−1
2 wherever m is least positive integer with

1
m
< λh (f) ≤ 1 < λk (g) <∞;

(d) δ = 1 while 1 < min {λh (f) , λk (g)} <∞ .
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Proof. Case I. Let 0 < min {λh (f) , λk (g)} ≤ max {λh (f) , λk (g)} <
1. Now we consider that m is least positive integer such that 1

m
<

min {λh (f) , λk (g)} ≤max {λh (f) , λk (g)}< 1.Also suppose that λh (f)−
ε > 1

m
and λk (g) − ε > 1

m
respectively where ε (> 0) is arbitrary. Now

in view of Lemma 1, Lemma 2 and for any even integer n, we get for all
sufficiently large values of r that

|̂h| (|fn| (r)) ≥ (|gn−1| (r))(λh(f)−ε)

i.e., |̂h| (|fn| (r)) ≥ (|gn−1| (r))
1
m

i.e., |̂h| (|fn| (r)) ≥ |gn−1|
(
r

1
m

)
i.e., |̂h| (|fn| (r)) ≥ |g|

(
|fn−2|

(
r

1
m

))
i.e., |̂h2| (|fn| (r)) ≥ |̂k|

(
|g|
(
|fn−2|

(
r

1
m

)))
i.e., |̂h2| (|fn| (r)) ≥

(
|fn−2|

(
r

1
m

))(λk(g)−ε)
i.e., |̂h2| (|fn| (r)) ≥

(
|fn−2|

(
r

1
m

)) 1
m

i.e., |̂h2| (|fn| (r)) ≥ |fn−2|
(
r

1
m2

)
....... ........... ............. ..........

....... ........... ............. ..........

Therefore,

|̂hn| (|fn| (r)) ≥ |̂k|
(
|g|
(
r

1
mn−1

))
when n is even .

Similarly,

|̂hn| (|fn| (r)) ≥ |̂h|
(
|f |
(
r

1
mn−1

))
when n (n 6= 1) is odd .

Thus (i) (a) and (ii) (a) of lemma are established.
Case II. Let 0 < min {λh (f) , λk (g)} ≤ 1 < max {λh (f) , λk (g)} <

∞.
Sub case (A). Let 0 < λk (g) ≤ 1 < λh (f) < ∞. Now we consider

m is least positive integer such that 1
m
< λk (g) ≤ 1 < λh (f) < ∞.

Also suppose that λk (g)− ε > 1
m

and λh (f)− ε > 1 respectively where
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ε (> 0) is arbitrary. Now in view of Lemma 1, Lemma 2 and for any
even integer n, we obtain for all sufficiently large values of r that

|̂h| (|fn| (r)) ≥ (|gn−1| (r))(λh(f)−ε)

i.e., |̂h| (|fn| (r)) ≥ |g| (|fn−2| (r))

i.e., |̂h2| (|fn| (r)) ≥ |̂k| (|g| (|fn−2| (r)))

i.e., |̂h2| (|fn| (r)) ≥ (|fn−2| (r))(λk(g)−ε)

i.e., |̂h2| (|fn| (r)) ≥ (|fn−2| (r))
1
m

i.e., |̂h2| (|fn| (r)) ≥ |fn−2|
(
r

1
m

)
....... ........... ............. ..........

....... ........... ............. ..........

Therefore,

|̂hn| (|fn| (r)) ≥ |̂k|
(
|g|
(
r

1

m
n
2 −1

))
when n is even .

Similarly,

|̂hn| (|fn| (r)) ≥ |̂h|
(
|f |
(
r

1

m
n−1
2

))
when n (n 6= 1) is odd .

Thus (i) (b) and (ii) (b) of lemma are established.
Subcase (B). Let 0 < λh (f) ≤ 1 < λk (g) < ∞. Now we consider

m is least positive integer such that 1
m
< λh (f) ≤ 1 < λk (g) < ∞.

Also suppose that λk (g)− ε > 1 and λh (f)− ε > 1
m

respectively where
ε (> 0) is arbitrary. Now in view of Lemma 1, Lemma 2 and for any
even integer n, we get for all sufficiently large values of r that

|̂h| (|fn| (r)) ≥ (|gn−1| (r))(λh(f)−ε)

i.e., |̂h| (|fn| (r)) ≥ (|gn−1| (r))
1
m

i.e., |̂h| (|fn| (r)) ≥ |gn−1|
(
r

1
m

)
i.e., |̂h| (|fn| (r)) ≥ |g|

(
|fn−2|

(
r

1
m

))
i.e., |̂h2| (|fn| (r)) ≥ |̂k|

(
|g|
(
|fn−2|

(
r

1
m

)))
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i.e., |̂h2| (|fn| (r)) ≥
(
|fn−2|

(
r

1
m

))(λk(g)−ε)
i.e., |̂h2| (|fn| (r)) ≥

(
|fn−2|

(
r

1
m

))
i.e., |̂h2| (|fn| (r)) ≥ |fn−2|

(
r

1
m

)
....... ........... ............. ..........

....... ........... ............. ..........

Therefore,

|̂hn| (|fn| (r)) ≥ |̂k|
(
|g|
(
r

1

m
n
2

))
when n is even .

Similarly,

|̂hn| (|fn| (r)) ≥ |̂h|
(
|f |
(
r

1

m
n−1
2

))
when n (n 6= 1) is odd .

Thus (i) (c) and (ii) (c) of lemma are established.
Case III. Let 1 < min {ρh (f) , ρk (g)} < ∞. In this case we can

choose an arbitrary ε(> 0) in such a manner so that λk (g)− ε > 1 and
λh (f)−ε > 1 hold. Now reasoning similarly as in the proof stated above
one can easily deduce the conclusion of (i) (d) and (ii) (d) of lemma, so
its proof is omitted.

This completes the proof of the lemma.

3. Main Results

In this section we present the main results of the paper.

Theorem 1. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞ and 0 < λk (g) <∞. Then for every positive constant µ and
every real number α,

lim
r→+∞

|̂hn| (|fn| (r)){
log |̂h| (|f |(rµ))

}1+α =∞

where n is any integer such that n > 1.
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Proof. First let us consider n to be an even integer. If α be such that
1 + α ≤ 0 then the theorem is trivial. So we suppose that 1 + α > 0.
Now it follows from the first part of Lemma 4, for all sufficiently large
values of r that

(4) |̂hn| (|fn| (r)) ≥
(
r

1
δ

)λk(g)−ε
,

where δ satisfies the conditions of Lemma 4.
Again from the definition of ρh (f) , it follows for all sufficiently large

values of r that

(5)
{

log |̂h| (|f |(rµ))
}1+α

≤ (ρh (f) + ε)1+α µ1+α (log r)1+α .

Now from (4) and (5) , it follows for all sufficiently large values of r that

|̂hn| (|fn| (r)){
log |̂h| (|f |(rµ))

}1+α >

(
r

1
δ

)λk(g)−ε
(ρh (f) + ε)1+α µ1+α (log r)1+α

.

Since r
λk(g)−ε

δ

(log r)1+α
→∞ as r →∞, therefore from above we obtain that

lim
r→+∞

|̂hn| (|fn| (r)){
log |̂h| (|f |(rµ))

}1+α =∞ for any even number n.

Similarly, with the help of the second part of Lemma 4 one can easily
derive the same conclusion for any odd integer n (6= 1) .

Thus the theorem follows from above.

Remark 1. Theorem 1 is still valid with “limit superior” instead of
“ limit ” if we replace the condition “ 0 < λh (f) ≤ ρh (f) < ∞” by “
0 < λh (f) <∞”.

In the line of Theorem 1, one may state the following theorem without
its proof:

Theorem 2. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) < ∞
and 0 < λk (g) ≤ ρk (g) < ∞. Then for every positive constant µ and
every real number α,

lim
r→+∞

|̂hn| (|fn| (r)){
log |̂k| (|g|(rµ))

}1+α =∞



642 Tanmay Biswas

where n is any integer such that n > 1.

Remark 2. In Theorem 2 if we take the condition 0 < λk (g) < ∞
instead of 0 < λk (g) ≤ ρk (g) < ∞, then also Theorem 2 remains true
with “limit superior” in place of “ limit ”.

Theorem 3. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞ and 0 < ρk (g) <∞. Then for every positive constant µ and
each α ∈ (−∞,∞) ,

(i) lim
r→∞

(
|̂hn| (|fn| (r))

)1+α
log |̂h| (|f |(exp rµ))

= 0 if µ > δ(1+α)ρk (g) when n is even,

and

(ii) lim
r→+∞

(
|̂hn| (|fn| (r))

)1+α
log |̂h| (|f |(exp rµ))

= 0 if µ > δ(1 + α)ρh (f) when n ( 6= 1)

is any odd integer where δ satisfies the conditions of Lemma 3.

Proof. If 1 + α ≤ 0, then the theorem is obvious. We consider that
1+α > 0. Now it follows from the first part of Lemma 3 for all sufficiently
large values of r that

(6) |̂hn| (|fn| (r)) ≤ rδ(ρk(g)+ε),

where δ satisfies the conditions of Lemma 3.
Again for all sufficiently large values of r we get that

(7) log |̂h| (|f |(exp rµ)) ≥ (λh (f)− ε) rµ .
Hence for all sufficiently large values of r, we obtain from (6) and (7)
that

(8)

(
|̂hn| (|fn| (r))

)1+α
log |̂h| (|f |(exp rµ))

≤ rδ(ρk(g)+ε)(1+α)

(λh (f)− ε) rµ
,

where we choose 0 < ε < min
{
λh (f) , µ

1+α
− ρk (g)

}
.

So from (8) we obtain that

lim
r→+∞

(
|̂hn| (|fn| (r))

)1+α
log |̂h| (|f |(exp rµ))

= 0 .

This proves the first part of the theorem.
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Similarly the second part of the theorem follows from the second part
of Lemma 3.

This proves the theorem.

Remark 3. In Theorem 3 if we take the condition 0 < ρh (f) < ∞
instead of 0 < λh (f) ≤ ρh (f) < ∞, the theorem remains true with “
limit inferior” in place of “limit ”.

In view of Theorem 3, the following theorem can be carried out :

Theorem 4. Let f , g, k, h ∈ A (K) be such that 0 < ρh (f) < ∞
and 0 < λk (g) ≤ ρk (g) < ∞. Then for every positive constant µ and
each α ∈ (−∞,∞) ,

(i) lim
r→+∞

(
|̂hn| (|fn| (r))

)1+α
log |̂k| (|g|(exp rµ))

= 0 if µ > δ(1+α)ρk (g) when n is even,

and

(ii) lim
r→+∞

(
|̂hn| (|fn| (r))

)1+α
log |̂k| (|g|(exp rµ))

= 0 if µ > δ(1 + α)ρh (f) when n (6= 1)

is any odd integer where δ satisfies the conditions of Lemma 3.

The proof is omitted.

Remark 4. In Theorem 4 if we take the condition 0 < ρk (g) < ∞
instead of 0 < λk (g) ≤ ρk (g) <∞ then the theorem remains true with
“ limit inferior” in place of “limit ”.

Theorem 5. Let f , g, k, h ∈ A (K) be such that λk (g) < λh (f) ≤
ρh (f) <∞ and 0 < ρk (g) <∞. Then for any even number n,

lim
r→+∞

|̂hn| (|fn| (r))
|̂h| (|f | (rδ))

= 0,

where δ satisfies the conditions of Lemma 3.

Proof. From the first part of Lemma 3, we obtain for a sequence of
values of r tending to infinity that

(9) |̂hn| (|fn| (r)) ≤ rδ(λk(g)+ε) .
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Again from the definition of relative order, we obtain for all sufficiently
large values of r that

(10) |̂h|
(
|f |
(
rδ
))

> rδ(λh(f)−ε).

Now in view of (9) and (10) , we get for a sequence of values of r tending
to infinity that

(11)
|̂hn| (|fn| (r))
|̂h| (|f | (rδ))

≤ rδ(λk(g)+ε)

rδ(λh(f)−ε)
.

Now as λk (g) < λh (f) , we can choose ε (> 0) in such a way that λk (g)+
ε < λh (f)− ε and the theorem follows from (11) .

Remark 5. If we take 0 < ρk (g) < λh (f) ≤ ρh (f) <∞ instead of ”
λk (g) < λh (f) ≤ ρh (f) <∞ and ρk (g) <∞ ” and the other conditions
remain the same, the conclusion of Theorem 5 remains valid with “ limit
inferior ” replaced by “ limit ”.

Theorem 6. Let f , g, k, h ∈ A (K) be such that λh (f) < λk (g) ≤
ρk (g) <∞ and 0 < ρh (f) <∞. Then for any odd number n (6= 1) ,

lim
r→+∞

|̂hn| (|fn| (r))
|̂k| (|g| (rδ))

= 0,

where δ satisfies the conditions of Lemma 3.

The proof of Theorem 6 is omitted as it can be carried out in the line
of Theorem 5 and with the help of the second part of Lemma 3.

Remark 6. If we consider 0 < ρh (f) < λk (g) ≤ ρk (g) <∞ instead
of ” λh (f) < λk (g) ≤ ρk (g) < ∞ and ρh (f) < ∞ ” and the other
conditions remain the same, the conclusion of Theorem 5 remains valid
with “ limit inferior ” replaced by “ limit ”.

Theorem 7. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞ and 0 < ρk (g) <∞. Then

(i) lim
r→+∞

log |̂hn| (|fn| (r))
log |̂h| (|f | (rδ))

≤ ρk (g)

λh (f)
when n is even,

and

(ii) lim
r→+∞

log |̂hn| (|fn| (r))
log |̂h| (|f | (rδ))

≤ ρh (f)

λh (f)
when n (6= 1) is any odd integer
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where δ satisfies the conditions of Lemma 3.

Proof. From the first part of Lemma 3, it follows for all sufficiently
large values of r that

log |̂hn| (|fn| (r))
log |̂h| (|f | (rδ))

≤
log |̂k|

(
|g|
(
rδ
))

log |̂h| (|f | (rδ))

i.e.,
log |̂hn| (|fn| (r))
log |̂h| (|f | (rδ))

≤
log |̂k|

(
|g|
(
rδ
))

log rδ
· log rδ

log |̂h| (|f | (rδ))

i.e., lim
r→+∞

log |̂hn| (|fn| (r))
log |̂h| (|f | (rδ))

≤ lim
r→+∞

log |̂k|
(
|g|
(
rδ
))

log rδ
· lim
r→+∞

log rδ

log |̂h| (|f | (rδ))

i.e., lim
r→+∞

log |̂hn| (|fn| (r))
log |̂h| (|f | (rδ))

≤ ρk (g) · 1

λh (f)
=
ρk (g)

λh (f)
.

Thus the first part of theorem follows from above.
Likewise, with the help of the second part of Lemma 3 one can easily

derive conclusion of the second part of theorem.
This proves the theorem.

Theorem 8. Let f , g, k, h ∈ A (K) be such that 0 < λk (g) ≤
ρk (g) <∞ and 0 < ρh (f) <∞.Then

(i) lim
r→+∞

log |̂hn| (|fn| (r))
log |̂k| (|g| (rδ))

≤ ρk (g)

λk (g)
when n is even,

and

(ii) lim
r→+∞

log |̂hn| (|fn| (r))
log |̂k| (|g| (rδ))

≤ ρh (f)

λk (g)
when n (6= 1) is any odd integer

where δ satisfies the conditions of Lemma 3.

The proof of Theorem 8 is omitted as it can be carried out in the line
of Theorem 7.

Now we state the following two theorems without their proofs as those
can easily be carried out in the line of Theorem 7 and Theorem 8 re-
spectively and with the help of Lemma 3.
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Theorem 9. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞ and 0 < λk (g) ≤ ρk (g) <∞. Then

(i) lim
r→+∞

log |̂hn| (|fn| (r))
log |̂h| (|f | (rδ))

≤ λk (g)

λh (f)
when n is even,

and

(ii) lim
r→+∞

log |̂hn| (|fn| (r))
log |̂h| (|f | (rδ))

≤ 1 when n (6= 1) is any odd integer

where δ satisfies the conditions of Lemma 3.

Theorem 10. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞ and 0 < λk (g) ≤ ρk (g) <∞. Then

(i) lim
r→+∞

log |̂hn| (|fn| (r))
log |̂k| (|g| (rδ))

≤ 1 when n is even,

and

(ii) lim
r→+∞

log |̂hn| (|fn| (r))
log |̂k| (|g| (rδ))

≤ λh (f)

λk (g)
when n (6= 1) is any odd integer

where δ satisfies the conditions of Lemma 3.

Theorem 11. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) < ∞
and 0 < λk (g) <∞. Then for any even number n,

(i) lim
r→+∞

log |̂hn|
(
|fn|

(
rδ
))

log |̂h| (|f | (r))
≥ λk (g)

ρh (f)
when 0 < ρh (f) <∞

and

(ii) lim
r→+∞

log |̂hn|
(
|fn|

(
rδ
))

log |̂k| (|g| (r))
≥ λk (g)

ρk (g)
when 0 < ρk (g) <∞,

where δ satisfies the conditions of Lemma 4.

Proof. From the first part of Lemma 4, we obtain for all sufficiently
large values of r that

(12) log |̂hn|
(
|fn|

(
rδ
))
≥ (λk (g)− ε) log r .
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Also from the definition of ρh (f) , we obtain for all sufficiently large
values of r that

(13) log |̂h| (|f | (r)) ≤ (ρh (f) + ε) log r .

Analogously,from the definition of ρk (g) , it follows for all sufficiently
large values of r that

(14) log |̂k| (|g| (r)) ≤ (ρk (g) + ε) log r .

Now from (12) and (13) , it follows for all sufficiently large values of r
that

log |̂hn|
(
|fn|rδ

)
log |̂h| (|f | (r))

≥ (λk (g)− ε) log r

(ρh (f) + ε) log r

(15) i.e., lim
r→+∞

log |̂hn|
(
|fn|

(
rδ
))

log |̂h| (|f | (r))
≥ λk (g)

ρh (f)
.

Thus the first part of theorem follows from (15).
Likewise, the conclusion of the second part of theorem can easily be

derived from (12) and (14) .
Hence the theorem follows.

Theorem 12. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) < ∞
and 0 < λk (g) <∞. Then for any odd number n (6= 1),

(i) lim
r→+∞

log |̂hn|
(
|fn|

(
rδ
))

log |̂h| (|f | (r))
≥ λh (f)

ρh (f)
when 0 < ρh (f) <∞

and

(ii) lim
r→+∞

log |̂hn|
(
|fn|

(
rδ
))

log |̂k| (|g| (r))
≥ λh (f)

ρk (g)
when 0 < ρk (g) <∞,

where δ satisfies the conditions of Lemma 4.

The proofs of Theorem 12 is omitted as it can be carried out in the
line of Theorem 11 and with the help of the second part of Lemma 4.

Now we state the following two theorems without their proofs as those
can easily be carried out in the line of Theorem 11 and Theorem 12
respectively and with the help of Lemma 4.



648 Tanmay Biswas

Theorem 13. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) < ∞
and 0 < λk (g) ≤ ρk (g) <∞. Then for any even number n,

(i) lim
r→+∞

log |̂hn|
(
|fn|

(
rδ
))

log |̂h| (|f | (r))
≥ ρk (g)

ρh (f)
when 0 < ρh (f) <∞

and

(ii) lim
r→+∞

log |̂hn|
(
|fn|

(
rδ
))

log |̂k| (|g| (r))
≥ 1,

where δ satisfies the conditions of Lemma 4.

Theorem 14. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞ and 0 < λk (g) <∞. Then for any odd number n ( 6= 1) ,

(i) lim
r→+∞

log |̂hn|
(
|fn|

(
rδ
))

log |̂k| (|g| (r))
≥ ρh (f)

ρk (g)
when 0 < ρk (g) <∞

and

(ii) lim
r→+∞

log |̂hn|
(
|fn|

(
rδ
))

log |̂h| (|f | (r))
≥ 1 when ρh (f) <∞,

where δ satisfies the conditions of Lemma 4.

Theorem 15. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) < ∞, 0 < λk (g) < ∞ and 0 < µ < ρk (g) < ∞. Then for any
even number n ,

lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h| (|f | (exp rµ))
=∞,

where δ satisfies the conditions of Lemma 4.

Proof. From the first part of Lemma 4, we get for a sequence of values
of r tending to infinity that

(16) |̂hn|
(
|fn|

(
rδ
))
≥ (r)(ρk(g)−ε) .

Again from the definition of ρh (f) , we obtain for all sufficiently large
values of r that

(17) log |̂h| (|f | (exp rµ)) ≤ (ρh (f) + ε) rµ .
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Now from (16) and (17) , it follows for a sequence of values of r tending
to infinity that

(18)
|̂hn|

(
|fn|

(
rδ
))

log |̂h| (|f | (exp rµ))
≥ r(ρk(g)−ε)

(ρh (f) + ε) rµ
.

As µ < ρk (g) , we can choose ε(> 0) in such a way that

(19) µ < ρk (g)− ε .

Thus from (18) and (19) we get that

(20) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h| (|f | (exp rµ))
=∞ .

Hence the theorem follows from (20) .

Theorem 16. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) < ∞, 0 < λk (g) < ∞ and 0 < µ < ρk (g) < ∞. Then for any
even number n ,

lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂k| (|g| (exp rµ))
=∞,

where δ satisfies the conditions of Lemma 4.

Proof. Let 0 < µ < µ0 < ρk (g). Then from (20), we obtain for a
sequence of values of r tending to infinity and A > 1 that

|̂hn|
(
|fn|

(
rδ
))
> A log |̂h| (|f | (exp rµ0))

i.e., |̂hn|
(
|fn|

(
rδ
))
> A (λh (f)− ε) rµ0 .(21)

Again from the definition of ρk (g) , we obtain for all sufficiently large
values of r that

(22) log |̂k| (|g| (exp rµ)) ≤ (ρk (g) + ε) rµ .

So combining (21) and (22) , we obtain for a sequence of values of r
tending to infinity that

(23)
|̂hn|

(
|fn|

(
rδ
))

log |̂k| (|g| (exp rµ))
>
A (λh (f)− ε) rµ0

(ρk (g) + ε) rµ
.
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Since µ0 > µ, from (23) it follows that

lim
r→+∞

|̂hn| (|fn| (r))
log |̂k| (|g| (exp rδµ))

=∞ .

Thus the theorem follows.

Now we state the following two theorems without their proofs as those
can easily be carried out in the line of Theorem 15 and Theorem 16
respectively and with the help of the second part of Lemma 4.

Theorem 17. Let f , g, k, h ∈ A (K) be such that 0 < λk (g) ≤
ρk (g) <∞, 0 < λh (f) <∞ and 0 < µ < ρh (f) <∞. Then for any odd
number n (6= 1) ,

lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h| (|f | (exp rµ))
=∞,

where δ satisfies the conditions of Lemma 4.

Theorem 18. Let f , g, k, h ∈ A (K) be such that 0 < λk (g) ≤
ρk (g) <∞, 0 < λh (f) <∞ and 0 < µ < ρh (f) <∞. Then for any odd
number n (6= 1) ,

lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂k| (|g| (exp rµ))
=∞,

where δ satisfies the conditions of Lemma 4.

Theorem 19. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) < ∞, 0 < ρk (g) < ∞ and λk (g) < µ < ∞. Then for any even
number n ,

lim
r→+∞

|̂hn| (|fn| (r))
log |̂h| (|f | (exp rδµ))

= 0,

where δ satisfies the conditions of Lemma 3.

Proof. From the first part of Lemma 3, it follows for a sequence of
values of r tending to infinity that

(24) |̂hn| (|fn| (r)) ≤ rδ(λk(g)+ε) .

Again for all sufficiently large values of r we get that

(25) log |̂h|
(
|f |
(
exp rδµ

))
≥ (λh (f)− ε) rδµ .
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Now from (24) and (25) , it follows for a sequence of values of r tending
to infinity that

(26)
|̂hn| (|fn| (r))

log |̂h| (|f | (exp rδµ))
≤ rδ(λk(g)+ε)

(λh (f)− ε) rδµ
.

As λk (g) < µ, we can choose ε (> 0) in such a way that

(27) λk (g) + ε < µ .

Thus the theorem follows from (26) and (27).

In the line of Theorem 19, we may state the following theorem without
its proof:

Theorem 20. Let f , g, k, h ∈ A (K) be such that 0 < ρh (f) < ∞,
0 < ρk (g) <∞ and λk (g) < µ <∞. Then for any even number n ,

lim
r→+∞

|̂hn| (|fn| (r))
log |̂k| (|g| (exp rδµ))

= 0,

where δ satisfies the conditions of Lemma 3.

Theorem 21. Let f , g, k, h ∈ A (K) be such that 0 < λk (g) ≤
ρk (g) < ∞, 0 < ρh (f) < ∞ and λh (f) < µ < ∞. Then for any odd
number n (6= 1) ,

lim
r→+∞

|̂hn| (|fn| (r))
log |̂k| (|g| (exp rδµ))

= 0,

where δ satisfies the conditions of Lemma 3.

Theorem 22. Let f , g, k, h ∈ A (K) be such that 0 < ρk (g) < ∞,
0 < ρh (f) <∞ and λh (f) < µ <∞. Then for any odd number n (6= 1)
,

lim
r→+∞

|̂hn| (|fn| (r))
log |̂h| (|f | (exp rδµ))

= 0,

where δ satisfies the conditions of Lemma 3.

We omit the proofs of Theorem 21 and Theorem 22 as those can be
carried out in the line of Theorem 19 and Theorem 20 respectively and
with the help of the second part of Lemma 3.
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Theorem 23. Let F, G, H, K, f, g, h, k ∈ A (K) be such that
0 < λH (F ) <∞, 0 < λK (G) <∞, 0 < ρh (f) <∞ and 0 < ρk (g) <∞.
Then for any two integers m(6= 1) and n( 6= 1)

(i) lim
r→+∞

|̂Hm| (|Fm| (r))
|̂hn| (|fn| (r)) · log |̂h| (|f | (r))

=∞

and

(ii) lim
r→+∞

|̂Hm| (|Fm| (r))
|̂hn| (|fn| (r)) · log |̂k| (|g| (r))

=∞,

when

(28)



δ2ρk (g) < λK (G) for m,n both even

δ2ρh (f) < λH (F ) for m(6= 1), n(6= 1) both odd

δ2ρh (f) < λK (G) for m even and n(6= 1) odd

δ2ρk (g) < λH (F ) for m(6= 1) odd and n even,

where δ satisfies the conditions of Lemma 3.

Proof. We have from the definition of relative order and for all suffi-
ciently large values of r that

(29) log |̂h| (|f | (r)) ≤ (ρh (f) + ε) log r .

Case I. Let m and n are any two even numbers.
Therefore in view of first part of Lemma 3, we get for all sufficiently

large values of r that

(30) |̂hn| (|fn| (r)) ≤ (r)δ(ρk(g)+ε) .

So from (29) and (30) it follows for all sufficiently large values of r
that

(31) |̂hn| (|fn| (r)) · log |̂h| (|f | (r)) ≤ (r)δ(ρk(g)+ε) · (ρh (f) + ε) log r .

Also from first part of Lemma 4, we obtain for all sufficiently large
values of r that

(32) |̂Hm| (|Fm| (r)) ≥ (r)
(λK (G)−ε)

δ .
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Hence combining (31) and (32) we get for all sufficiently large values
of r that,

(33)
|̂Hm| (|Fm| (r))

|̂hn| (|fn| (r)) · log |̂h| (|f | (r))
≥ (r)

(λK (G)−ε)
δ

(r)δ(ρk(g)+ε) · (ρh (f) + ε) log r
.

Since δ2ρk (g) < λK (G), we can choose ε(> 0) in such a manner that

(34) δ2 (ρk (g) + ε) ≤ (λK (G)− ε) .

Thus from (33) and (34) we obtain that

(35) lim
r→+∞

|̂Hm| (|Fm| (r))
|̂hn| (|fn| (r)) · log |̂h| (|f | (r))

=∞ .

Case II. Let m(6= 1) and n(6= 1) are any two odd numbers .
Now in view of second part of Lemma 3, we get for all sufficiently

large values of r that

(36) |̂hn| (|fn| (r)) ≤ (r)δ(ρh(f)+ε) .

So from (29) and (36) it follows for all sufficiently large values of r
that

(37) |̂hn| (|fn| (r)) · log |̂h| (|f | (r)) ≤ (r)δ(ρh(f)+ε) · (ρh (f) + ε) log r .

Also from second part of Lemma 4, we obtain for all sufficiently large
values of r that

(38) |̂Hm| (|Fm| (r)) ≥ (r)
(λH (F )−ε)

δ .

Hence combining (37) and (38) we get for all sufficiently large values
of r that,

(39)
|̂Hm| (|Fm| (r))

|̂hn| (|fn| (r)) · log |̂h| (|f | (r))
≥ (r)

(λH (F )−ε)
δ

(r)δ(ρh(f)+ε) · (ρh (f) + ε) log r
.

As δ2ρh (f) < λH (F ), we can choose ε(> 0) in such a manner that

(40) δ2 (ρh (f) + ε) ≤ (λH (F )− ε) .

Therefore from (39) and (40) it follows that

(41) lim
r→+∞

|̂Hm| (|Fm| (r))
|̂hn| (|fn| (r)) · log |̂h| (|f | (r))

=∞ .

Case III. Let m be any even number and n( 6= 1) be any odd number.
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Then combining (32) and (37) we get for all sufficiently large values
of r that

(42)
|̂Hm| (|Fm| (r))

|̂hn| (|fn| (r)) · log |̂h| (|f | (r))
≥ (r)

(λK (G)−ε)
δ

(r)δ(ρh(f)+ε) · (ρh (f) + ε) log r
.

Since δ2ρh (f) < λK (G), we can choose ε(> 0) in such a manner that

(43) δ2 (ρh (f) + ε) ≤ (λK (G)− ε) .

So from (42) and (43) we get that

(44) lim
r→+∞

|̂Hm| (|Fm| (r))
|̂hn| (|fn| (r)) · log |̂h| (|f | (r))

=∞ .

Case IV. Let m(6= 1) be any odd number and n be any even number .
Therefore combining (31) and (38) we obtain for all sufficiently large

values of r that

(45)
|̂Hm| (|Fm| (r))

|̂hn| (|fn| (r)) · log |̂h| (|f | (r))
≥ (r)

(λH (F )−ε)
δ

(r)δ(ρk(g)+ε) · (ρh (f) + ε) log r
.

As δ2ρk (g) < λH (F ), we can choose ε(> 0) in such a manner that

(46) δ2 (ρk (g) + ε) ≤ (λH (F )− ε) .

Hence from (45) and (46) we have

(47) lim
r→+∞

|̂Hm| (|Fm| (r))
|̂hn| (|fn| (r)) · log |̂h| (|f | (r))

=∞ .

Thus the first part of the theorem follows from (35) , (41) , (44) and
(47) .

Similarly, from the definition of ρk (g) one can easily derive the con-
clusion of the second part of the theorem.

Hence the theorem follows.

Remark 7. If we consider ρK (G) , ρH (F ) , ρK (G) and ρH (F ) instead
of λK (G) , λH (F ) , λK (G) and λH (F ) respectively in (28) and the other
conditions remain the same, the conclusion of Theorem 23 is remains
valid with “limit superior” replaced by “limit”.
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Theorem 24. Let f , g, k, h ∈ A (K) be such that 0 < ρh (f) < ∞,
0 < ρk (g) <∞ and σk (g) <∞. Then for any even number n,

(i) lim
r→+∞

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δρk(g)
)) ≤ σk (g)

λh (f)
if λh (f) 6= 0

and

(ii) lim
r→+∞

|̂hn| (|fn| (r))

log |̂k|
(
|g|
(

exp (r)δρk(g)
)) ≤ σk (g)

λk (g)
if λk (g) 6= 0,

where δ satisfies the conditions of Lemma 3.

Proof. In view of the first part of Lemma 3 we have for all sufficiently
large values of r that

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δρk(g)
)) ≤

|̂k|
(
|g|
(
rδ
))

log |̂h|
(
|f |
(

exp (r)δρk(g)
))

i.e.,
|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δρk(g)
)) ≤

|̂k|
(
|g|
(
rδ
))

(r)δρk(g)
· log exp (r)δρk(g)

log |̂h|
(
|f |
(

exp (r)δρk(g)
))

i.e., lim
r→+∞

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δρk(g)
)) ≤

lim
r→+∞

|̂k|
(
|g|
(
rδ
))

(r)δρk(g)
· lim
r→+∞

log exp (r)δρk(g)

log |̂h|
(
|f |
(

exp (r)δρk(g)
))

i.e., lim
r→+∞

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δρk(g)
)) ≤ σk (g) · 1

λh (f)
=
σk (g)

λh (f)
.

Thus the first part of theorem is established.

Similarly, with the help of the first part of Lemma 3 one can easily
derive conclusion of the second part of theorem.

Hence the theorem follows.
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Theorem 25. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and σk (g) < ∞. Then for any
even number n,

(i) lim
r→+∞

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δρk(g)
)) ≤ min

{
σk (g)

λh (f)
,
σk (g)

ρh (f)

}
and

(ii) lim
r→+∞

|̂hn| (|fn| (r))

log |̂k|
(
|g|
(

exp (r)δρk(g)
)) ≤ min

{
σk (g)

λk (g)
,
σk (g)

ρk (g)

}
,

where δ satisfies the conditions of Lemma 3.

Proof of Theorem 25 is omitted as it can be carried out in the line of
Theorem 24 and with help of the first part of Lemma 3.

Now we state the following two theorems without their proofs as those
can easily be carried out with the help of second part of Lemma 3 and
in the line of Theorem 24 and Theorem 25 respectively.

Theorem 26. Let f , g, k, h ∈ A (K) be such that 0 < ρh (f) < ∞,
0 < ρk (g) <∞ and σh (f) <∞. Then for any odd number n ( 6= 1),

(i) lim
r→+∞

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δρh(f)
)) ≤ σh (f)

λh (f)
if λh (f) 6= 0

and

(ii) lim
r→+∞

|̂hn| (|fn| (r))

log |̂k|
(
|g|
(

exp (r)δρh(f)
)) ≤ σh (f)

λk (g)
if λk (g) 6= 0 ,

where δ satisfies the conditions of Lemma 3.

Theorem 27. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and σh (f) <∞. Then for any odd
number n (6= 1),

(i) lim
r→+∞

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δρh(f)
)) ≤ min

{
σh (f)

λh (f)
,
σh (f)

ρh (f)

}
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and

(ii) lim
r→+∞

|̂hn| (|fn| (r))

log |̂k|
(
|g|
(

exp (r)δρh(f)
)) ≤ min

{
σh (f)

λk (g)
,
σh (f)

ρk (g)

}
,

where δ satisfies the conditions of Lemma 3.

Analogously, one may state the following four theorems without their
proofs on the basis of relative weak type of p adic entire function with
respect to another p adic entire function :

Theorem 28. Let f , g, k, h ∈ A (K) be such that 0 < ρh (f) < ∞,
0 < ρk (g) <∞ and τ k (g) <∞. Then for any even number n,

(i) lim
r→+∞

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δλk(g)
)) ≤ τ k (g)

λh (f)
if λh (f) 6= 0

and

(ii) lim
r→+∞

|̂hn| (|fn| (r))

log |̂k|
(
|g|
(

exp (r)δλk(g)
)) ≤ τ k (g)

λk (g)
if λk (g) 6= 0 ,

where δ satisfies the conditions of Lemma 3.

Theorem 29. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and τ k (g) < ∞. Then for any
even number n,

(i) lim
r→+∞

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δλk(g)
)) ≤ min

{
τk (g)

λh (f)
,
τ k (g)

ρh (f)

}
and

(ii) lim
r→+∞

|̂hn| (|fn| (r))

log |̂k|
(
|g|
(

exp (r)δλk(g)
)) ≤ min

{
τk (g)

λk (g)
,
τ k (g)

ρk (g)

}
,

where δ satisfies the conditions of Lemma 3.

Theorem 30. Let f , g, k, h ∈ A (K) be such that 0 < ρh (f) < ∞,
0 < ρk (g) <∞ and τh (f) <∞. Then for any odd number n (6= 1),

(i) lim
r→+∞

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δλh(f)
)) ≤ τh (f)

λh (f)
if λh (f) 6= 0
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and

(ii) lim
r→+∞

|̂hn| (|fn| (r))

log |̂k|
(
|g|
(

exp (r)δλh(f)
)) ≤ τh (f)

λk (g)
if λk (g) 6= 0 ,

where δ satisfies the conditions of Lemma 3.

Theorem 31. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and τh (f) <∞. Then for any odd
number n (6= 1),

(i) lim
r→+∞

|̂hn| (|fn| (r))

log |̂h|
(
|f |
(

exp (r)δλh(f)
)) ≤ min

{
τh (f)

λh (f)
,
τh (f)

ρh (f)

}
and

(ii) lim
r→+∞

|̂hn| (|fn| (r))

log |̂k|
(
|g|
(

exp (r)δλh(f)
)) ≤ min

{
τh (f)

λk (g)
,
τh (f)

ρk (g)

}
,

where δ satisfies the conditions of Lemma 3.

Theorem 32. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) < ∞,
0 < λk (g) <∞ and σk (g) > 0. Then for any even number n,

(i) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h|
(
|f |
(

exp (r)ρk(g)
)) ≥ σk (g)

ρh (f)
if ρh (f) <∞

and

(ii) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂k|
(
|g|
(

exp (r)ρk(g)
)) ≥ σk (g)

ρk (g)
if ρk (g) <∞,

where δ satisfies the conditions of Lemma 4.

Proof. From the first part of Lemma 4, we obtain for all sufficiently
large values of r that

(48) |̂hn|
(
|fn|

(
rδ
))
≥ (σk (g)− ε) rρk(g) .

Also from the definition of ρh (f) , we obtain for all sufficiently large
values of r that

(49) log |̂h|
(
|f |
(

exp (r)ρk(g)
))
≤ (ρh (f) + ε) rρk(g) .
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Analogously,from the definition of ρk (g) , it follows for all sufficiently
large values of r that

(50) log |̂k|
(
|g|
(

exp (r)ρk(g)
))
≤ (ρk (g) + ε) rρk(g) .

Now from (48) and (49) , it follows for all sufficiently large values of
r that

|̂hn|
(
|fn|

(
rδ
))

log |̂h|
(
|f |
(

exp (r)ρk(g)
)) ≥ (σk (g)− ε) rρk(g)

(ρh (f) + ε) rρk(g)

i.e., lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h|
(
|f |
(

exp (r)ρk(g)
)) ≥ σk (g)

ρh (f)
.(51)

Thus the first part of theorem follows from (51).
Likewise, the conclusion of the second part of theorem can easily be

derived from (48) and (50) .
Hence the theorem follows.

Theorem 33. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and σk (g) > 0. Then for any even
number n,

(i) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h|
(
|f |
(

exp (r)ρk(g)
)) ≥ max

{
σk (g)

ρh (f)
,
σk (g)

λh (f)

}
and

(ii) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂k|
(
|g|
(

exp (r)ρk(g)
)) ≥ max

{
σk (g)

ρk (g)
,
σk (g)

λk (g)

}
,

where δ satisfies the conditions of Lemma 4.

Proof of Theorem 33 is omitted as it can be carried out in the line of
Theorem 32 and with help of the first part of Lemma 4.

Similarly, we state the following two theorems without their proofs as
those can easily be carried out with the help of second part of Lemma 4
and in the line of Theorem 32 and Theorem 33 respectively.
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Theorem 34. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) < ∞,
0 < λk (g) <∞ and σh (f) > 0. Then for any odd number n ( 6= 1),

(i) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h|
(
|f |
(

exp (r)ρh(f)
)) ≥ σh (f)

ρh (f)
if ρh (f) <∞

and

(ii) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂k|
(
|g|
(

exp (r)ρh(f)
)) ≥ σh (f)

ρk (g)
if ρk (g) <∞ ,

where δ satisfies the conditions of Lemma 4.

Theorem 35. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and σh (f) > 0. Then for any odd
number n (6= 1),

(i) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h|
(
|f |
(

exp (r)ρh(f)
)) ≥ max

{
σh (f)

ρh (f)
,
σh (f)

λh (f)

}
and

(ii) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂k|
(
|g|
(

exp (r)ρh(f)
)) ≥ max

{
σh (f)

ρk (g)
,
σh (f)

λk (g)

}
,

where δ satisfies the conditions of Lemma 4.

Similarly, one may state the following four theorems without their
proofs on the basis of relative weak type of p adic entire function with
respect to another p adic entire function :

Theorem 36. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) < ∞,
0 < λk (g) <∞ and τk (g) > 0. Then for any even number n,

(i) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h|
(
|f |
(

exp (r)λk(g)
)) ≥ τk (g)

ρh (f)
if ρh (f) <∞

and

(ii) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂k|
(
|g|
(

exp (r)λk(g)
)) ≥ τk (g)

ρk (g)
if ρk (g) <∞,

where δ satisfies the conditions of Lemma 4.
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Theorem 37. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and τk (g) > 0. Then for any even
number n,

(i) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h|
(
|f |
(

exp (r)λk(g)
)) ≥ max

{
τ k (g)

ρh (f)
,
τk (g)

λh (f)

}
and

(ii) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂k|
(
|g|
(

exp (r)λk(g)
)) ≥ max

{
τ k (g)

ρk (g)
,
τk (g)

λk (g)

}
,

where δ satisfies the conditions of Lemma 4.

Theorem 38. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) < ∞,
0 < λk (g) <∞ and τh (f) > 0. Then for any odd number n (6= 1),

(i) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h|
(
|f |
(

exp (r)λh(f)
)) ≥ τh (f)

ρh (f)
if ρh (f) <∞

and

(ii) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂k|
(
|g|
(

exp (r)λh(f)
)) ≥ τh (f)

ρk (g)
if ρk (g) <∞,

where δ satisfies the conditions of Lemma 4.

Theorem 39. Let f , g, k, h ∈ A (K) be such that 0 < λh (f) ≤
ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and τh (f) > 0. Then for any odd
number n (6= 1),

(i) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂h|
(
|f |
(

exp (r)λh(f)
)) ≥ max

{
τh (f)

ρh (f)
,
τh (f)

λh (f)

}
and

(ii) lim
r→+∞

|̂hn|
(
|fn|

(
rδ
))

log |̂k|
(
|g|
(

exp (r)λh(f)
)) ≥ max

{
τh (f)

ρk (g)
,
τh (f)

λk (g)

}
,

where δ satisfies the conditions of Lemma 4.
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