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SOME GROWTH PROPERTIES BASED ON (p, q)-TH

ORDER OF THE INTEGER TRANSLATION OF THE

COMPOSITE ENTIRE AND MEROMORPHIC

FUNCTIONS

Ritam Biswas

Abstract. In this paper the growth properties of the composition
of integer translated entire and meromorphic functions in terms of
their (p, q)-th order are discussed and based upon that some new
results are developed.

1. Introduction, definitions and notations

Investigation of the behaviour of meromorphic and entire functions
and their composition with the help of various growth indicators defined
for them has been the most important phenomenon in the theory of com-
plex numbers since years. Here we intend to develop some new results
based upon the basic discussion about the growth properties of compo-
sition of integer translated entire and meromorphic functions. Consider
f(z) to be an entire function defined in the finite complex plane C. The
maximum modulus function corresponding to entire f(z) is defined as
M(r; f) = max{|f(z)| : |z| = r}. If f(z) be meromorphic, a different
function T (r, f) termed as Nevanlinna’s Characteristic function of f(z),
may be defined for it, which plays the same role as maximum modulus
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function in the following way:

T (r, f) = N(r, f) +m(r, f),

where the function N(r, a; f) (N(r, a; f)) known as counting function of
a-points (distinct a-points) of meromorphic f is defined as

N(r, a; f) =

r∫
0

n(t, a; f)− n(0, a; f)

t
dt+ n(0, a; f) log r

(N(r, a; f) =

r∫
0

n(t, a; f)− n(0, a; f)

t
dt+ n(0, a; f) log r),

moreover we denote by n(r, a; f) (n(r, a; f)) the number of a-points (dis-
tinct a-points) of f in |z| ≤ r and an∞-point is a pole of f(z). In many
occasions N(r,∞; f) and N(r,∞; f) are denoted by N(r, f) and N(r, f)
respectively.

Further, the function m(r,∞; f) alternatively denoted by m(r, f)
known to be the proximity function of f(z) is defined as follows:

m(r, f) =
1

2π

2π∫
0

log+
∣∣f(reiθ)

∣∣ dθ,
where

log+ x = max{log x, 0}
for all x ≥ 0, where log x means the logarithm of x.

Also m(r, 1
f−a) may be denoted by m(r, a; f).

If f(z) be an entire function, then the Nevanlinna’s Characteristic
function T (r, f) of f(z) becomes

T (r, f) = m(r, f).

Further let f(z) be a meromorphic function and n ∈ N, where N is
the set of all natural numbers, then the translation of f(z) be denoted
by f(z + n). For each n ∈ N, one may obtain a function with some
properties. Let us consider this family by fn(z) where

fn(z) = {f(z + n) : n ∈ N} .
We recall that if α is a regular point of an analytic function f(z) and

if f(α) = 0, then α is called a zero of f(z). The point z = α is called
a zero of f(z) of multiplicity m (m being a positive integer) if in some
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neighbourhood of α, f(z) can be expanded in a Taylor’s series of the

form f(z) =
∞∑
n=m

an(z − α)n where am 6= 0.

It is clear that the number of zeros of f(z) may be changed in a finite
region after translation but it remains unaltered in the open complex
plane C, i.e.,

(1) N(r, f(z + n)) = N(r, f) + en,

where en is a residue term such that en → 0 as r →∞.
Also

m(r, f(z + n)) =
1

2π

2π∫
0

log+
∣∣f(reiθ + n)

∣∣ dθ
i.e.,m(r, f(z + n)) = m(r, f) + e

′

n,(2)

where e
′
n (may be distinct from en) be such that e

′
n → 0 as r →∞.

Therefore from (1) and (2), one may obtain that

N(r, f(z + n)) +m(r, f(z + n)) = N(r, f) + en +m(r, f) + e
′

n

i.e., T (r, f(z + n)) = T (r, f) + en + e
′

n.

Now if n varies, then the Nevanlinna’s Characteristic function for the
family fn(z), where fn(z) = {f(z + n) : n ∈ N} for the meromorphic
function f is

(3) T (r, fn) = nT (r, f) +
∑
n

(en + e
′

n).

Similarly, one can define a family for eachm ∈ N, gm(z) = {g(z +m) : m ∈ N}
where g(z) is an entire function. Then the composition fn◦gm is defined.

Let fn ◦ gm = ht, where h is a meromorphic function and t ∈ N. So
ht can be expressed as ht = {h(z + t) : t ∈ N} .

Then by (3)

T (r, ht) = tT (r, h) +
∑
t

(et + e
′

t)

where et, e
′
t → 0 as r →∞.

(4) i.e., T (r, fn ◦ gm) = tT (r, f ◦ g) +
∑
t

(et + e
′

t).
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Before introducing the growth definitions for the integer translation
of composite entire and meromorphic functions and some basic relations
related to it, the following notations and definitions are needed to be
mentioned [we do not explain the standard definitions and notations in
the theory of entire and meromorphic functions as those are available
in [9] and [4]]:

log[−k] x = exp[k] x; for k = 1, 2, 3, · · ·
log[0] x = x;

log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, · · ·.

and

exp[−k] x = log[k] x; for k = 1, 2, 3, · · ·
exp[0] x = x;

exp[k] x = exp
(
exp[k−1] x

)
for k = 1, 2, 3, · · ·.

We now recall the following definitions.

Definition 1. The order ρf and lower order λf of a meromorphic
function f are defined as

ρf = lim sup
r→∞

log T (r, f)

log r
and λf = lim inf

r→∞

log T (r, f)

log r
respectively.

If f is entire then one can easily verify that

ρf = lim sup
r→∞

log[2]M (r, f)

log r
and λf = lim inf

r→∞

log[2]M (r, f)

log r
.

Definition 2. [8] Let l be an integer ≥ 2. The generalized order ρ
[l]
f

and generalized lower order λ
[l]
f of an entire function f are defined as

ρ
[l]
f = lim sup

r→∞

log[l]M (r, f)

log r
and λ

[l]
f = lim inf

r→∞

log[l]M (r, f)

log r
respectively.

If f is meromorphic, one can easily verify that

ρ
[l]
f = lim sup

r→∞

log[l−1] T (r, f)

log r
and λ

[l]
f = lim inf

r→∞

log[l−1] T (r, f)

log r
.
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Juneja, Kapoor and Bajpai [5] defined the (p, q) th order and (p, q)
th lower order of an entire function f respectively as follows:

ρf (p, q) = lim sup
r→∞

log[p]M (r, f)

log[q] r
and λf (p, q) = lim inf

r→∞

log[p]M (r, f)

log[q] r
,

where p, q are positive integers with p > q.
When f is meromorphic, one can easily verify that

ρf (p, q) = lim sup
r→∞

log[p−1] T (r, f)

log[q] r
and λf (p, q) = lim inf

r→∞

log[p−1] T (r, f)

log[q] r
,

where p, q are positive integers and p > q.

The definitions of the growth indicators mentioned above are also
valid for the composite meromorphic and entire functions f ◦ g where f
is meromorphic and g is entire, as in this case f ◦g is also a meromorphic
function.

Now in the line of the definitions of (p, q)-th order and (p, q)-th lower
order of a meromorphic function f we can define the (p, q)-th order and
(p, q)-th lower order of the function fn, as

ρfn(p, q) = lim sup
r→∞

log[p−1] T (r, fn)

log[q] r

and

λfn(p, q) = lim inf
r→∞

log[p−1] T (r, fn)

log[q] r
,

where p, q are positive integers and p > q.
Now from (3) we obtain

log[p−1] T (r, fn) = log[p−1][nT (r, f) +
∑
t

(et + e
′

t)]

i.e., log[p−1] T (r, fn) = log[p−1][nT (r, f)

1 +

∑
t

(et + e
′

t)

nT (r, f)

]

i.e., lim sup
r→∞

log[p−1] T (r, fn)

log[q] r
= lim sup

r→∞

log[p−1] T (r, f) +O(1)

log[q] r
.

Therefore

(5) ρfn(p, q) = ρf (p, q).
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Similarly, we can show that

(6) λfn(p, q) = λf (p, q).

2. Lemmas

In this section we present some lemmas which will be frequently used
in the next section.

Lemma 1. [1] If f is a meromorphic function and g is an entire func-
tion then for all sufficiently large values of r,

T (r, f ◦ g) 6 {1 + o(1)} T (r, g)

logM (r, g)
T (M (r, g) , f) .

Lemma 2. [2] Let f be a meromorphic function and g be an entire
function and suppose that 0 < µ < ρg ≤ ∞.Then for a sequence of
values of r tending to infinity,

T (r, f ◦ g) ≥ T (exp(rµ), f).

Lemma 3. [3] Let g be an entire function. Then for any δ(> 0) the

function rλ
[l]
g +δ−λ[l]g (r) is ultimately an increasing function of r.

Lemma 4. [5] Let f be an entire function with non zero finite gener-

alised order ρ
[l]
f

(
non zero finite generalised lower order λ

[l]
f

)
. If p−q =

l− 1, then the (p, q)- th order ρf (p, q) (lower (p, q)- th order λf (p, q)) of
f will be equal to 1. If p − q 6= l − 1 then ρf (p, q) ( λf (p, q) ) is either
zero or infinity.

Remark 1. Lemma 4 is still valid for meromorphic f under the same
conditions stated as above.

3. Theorems

In this section we present the main results of the paper.

Theorem 1. Let g be entire function and h, k be two transcendental
entire functions such that λh (a, b) > 0, λk (c, d) > 0 and ρg (m,n) <
λk (c, d) where m,n, a, b, c, d are all positive integers with m > n, a >
b and c > d. Let hs, kt, fu, gv be the family of integer translations of
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the functions h, k, f, g respectively where s, t, u, v ∈ N. Then for every
meromorphic function f with 0 < ρf (p, q) <∞ and for any two positive
integers p, q with p > q

(i) lim
r→∞

log[a−1] T (exp[d−1] r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv)

=∞, if q > m and b < c,

(ii) lim
r→∞

log[a−1] T (exp[d−1] r, hs ◦ kt)
log[p+m−q−2] T (r, fu ◦ gv)

=∞, if q < m and b < c,

(iii) lim
r→∞

log[a+c−b−2] T (exp[d−1] r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv)

=∞, if q > m and b > c,

and (iv) lim
r→∞

log[a+c−b−2] T (exp[d−1] r, hs ◦ kt)
log[p+m−q−2] T (r, fu ◦ gv)

=∞, if q < m and b > c.

Proof. Let fu ◦gv = ht, where h is a meromorphic function and t ∈ N.
So ht can be expressed as

ht = {h(z + t) : t ∈ N} .

Then by (3) we obtain

T (r, ht) = tT (r, h) +
∑
t

(et + e
′

t),

where et, e
′
t → 0 as r →∞,

(7) i.e., T (r, fu ◦ gv) = tT (r, f ◦ g) +
∑
t

(et + e
′

t).

Now in view of Lemma 1 and the inequality T (r, g) 6 log+M (r, g) we
get from (7) for all sufficiently large values of r that

T (r, fu ◦ gv) ≤ t {1 + o(1)}T (M(r, g), f) +
∑
t

(et + e
′

t)

i.e., log[p−1] T (r, fu ◦ gv) ≤ log[p−1] T (M(r, g), f) +O(1)

i.e., log[p−1] T (r, fu ◦ gv) ≤ (ρf (p, q) + ε) log[q]M(r, g) +O(1).(8)

Now the following cases may arise :
Case I. Let q > m. Then we have from (8) for all sufficiently large
values of r,

(9) log[p−1] T (r, fu ◦ gv) 6 (ρf (p, q) + ε) log[m−1]M (r, g) +O(1).
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Now from the definition of (m,n)-th order of g we get for arbitrary
positive ε and for all sufficiently large values of r,

log[m]M (r, g) 6 (ρg(m,n) + ε) log[n] r

i.e., log[m]M (r, g) ≤ (ρg(m,n) + ε) log r.(10)

Also for all sufficiently large values of r it follows from (10) that

(11) log[m−1]M (r, g) 6 r(ρg(m,n)+ε).

So from (9) and (11) it follows for all sufficiently large values of r that

(12) log[p−1] T (r, fu ◦ gv) 6 (ρf (p, q) + ε) r(ρg(m,n)+ε) +O(1).

Case II. Let q < m. Then we get from(8) for all sufficiently large values
of r that
(13)

log[p−1] T (r, fu ◦ gv) 6 (ρf (p, q) + ε) exp[m−q] log[m]M (r, g) +O(1).

Again from (10) for all sufficiently large values of r,

exp[m−q] log[m]M (r, g) 6 exp[m−q] log r(ρg(m,n)+ε)

i.e., exp[m−q] log[m]M (r, g) 6 exp[m−q−1] r(ρg(m,n)+ε).(14)

Now from (13) and (14) we obtain for all sufficiently large values of r
that

log[p−1] T (r, fu ◦ gv) 6 (ρf (p, q) + ε) exp[m−q−1] r(ρg(m,n)+ε) +O(1)

i.e., log[p] T (r, fu ◦ gv) 6 exp[m−q−2] r(ρg(m,n)+ε) +O(1)

i.e., log[p+m−q−2] T (r, fu ◦ gv) 6 log[m−q−2] exp[m−q−2] r(ρg(m,n)+ε) +O(1)

(15) i.e., log[p+m−q−2] T (r, fu ◦ gv) 6 r(ρg(m,n)+ε) +O(1).

Since ρg (m,n) < λk (c, d) , we can choose ε (> 0) in such a way that

(16) ρg (m,n) + ε < λk (c, d)− ε.

Similarly, if we consider h◦k = w for some entire function w then in the
line of (7) we can obtain

(17) T (r, hs ◦ kt) = iT (r, h ◦ k) +
∑
i

(ei + e
′

i),

where i ∈ N and ei, e
′
i → 0 as r → ∞. Now using the inequality

T (r, h◦k) > 1
3

logM
{

1
8
M( r

4
, k) + ◦(1), h

}
{cf. [6]} and by the definition
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of (p, q)-th lower order of an entire function we obtain for all large values
of r that

log[a−1] T (exp[d−1] r, hs ◦ kt)

> log[a]M

{
1

8
M(

exp[d−1] r

4
, k) + ◦(1), h

}
+O (1)

i.e., log[a−1] T (exp[d−1] r, hs ◦ kt)

> (λh(a, b)− ε) log[b]

{
1

8
M(

exp[d−1] r

4
, k)

}
+O (1)

i.e., log[a−1] T (exp[d−1] r, hs ◦ kt)(18)

> (λh(a, b)− ε) log[b]M(
exp[d−1] r

4
, k) +O (1) .

Case III. Let b < c. Then from (18) it follows for all sufficiently large
values of r that

(19) log[a−1] T (exp[d−1] r, hs ◦ kt)

> (λh(a, b)− ε) exp[c−b−1] log[c−1]M(
exp[d−1] r

4
, k) +O(1).

Now from the definition of (c, d)-th lower order of k we obtain for arbi-
trary positive ε (> 0) and for all sufficiently large values of r that

log[c]M(
exp[d−1] r

4
, k) > (λk(c, d)− ε) log[d](

exp[d−1] r

4
)

i.e., log[c]M(
exp[d−1] r

4
, k) > (λk(c, d)− ε) log r +O(1)

i.e., log[c]M(
exp[d−1] r

4
, k) > log r(λk(c,d)−ε) +O(1).(20)

Also for all large values of r we get from (20) that

(21) log[c−1]M(
exp[d−1] r

4
, k) > r(λk(c,d)−ε) +O(1).

Now from (19) and (21) it follows for all sufficiently large values of r
that
(22)

log[a−1] T (exp[d−1] r, hs ◦ kt) > (λh(a, b)− ε) exp[c−b−1] r(λk(c,d)−ε) +O(1).
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Case IV. Let b > c. Then from (18) we obtain for all sufficiently large
values of r,

(23) log[a−1] T (exp[d−1] r, hs ◦ kt)

> (λh(a, b)− ε) log[b−c] log[c]

{
M(

exp[d−1] r

4
, k)

}
+O(1).

Now from (20) and (23) we have for all sufficiently large values of r,

log[a−1] T (exp[d−1] r, hs ◦ kt)

> (λh(a, b)− ε) log[b−c] log r(λk(c,d)−ε) +O(1)

i.e., log[a−1] T (exp[d−1] r, hs ◦kt)
> (λh(a, b)− ε) log[b−c+1] r(λk(c,d)−ε) +O(1)

(24)

i.e., log[a] T (exp[d−1] r, hs ◦kt) > log[b−c+2] r(λk(c,d)−ε) +O(1).

Since a > b and a and b both are positive integers, a ≥ b+1. So a−b ≥ 1.
Again since c is also a positive integer, c ≥ 1. Therefore a − b + c ≥ 2
i.e., a+ c− b− 2 ≥ 0. So from(24) we get for all sufficiently large values
of r,

(25) log[a+c−b−2] T (exp[d−1] r, hs◦kt) > r(λk(c,d)−ε)+O(1).

Now combining (12) of Case I and (22) of Case III, it follows for all
sufficiently large values of r that

log[a−1] T (exp[d−1] r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv)

≥ (λh(a, b)− ε) exp[c−b−1] r(λk(c,d)−ε) +O(1)

(ρf (p, q) + ε) r(ρg(m,n)+ε) +O(1)

i.e., lim inf
r→∞

log[a−1] T (exp[d−1] r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv)

=∞,

from which the first part of the theorem follows.
Again combining (15) of Case II and (22) of Case III we obtain for all
sufficiently large values of r that

log[a−1] T (exp[d−1] r, hs ◦ kt)
log[p+m−q−2] T (r, fu ◦ gv)

≥ (λh(a, b)− ε) exp[c−b−1] r(λk(c,d)−ε) +O(1)

r(ρg(m,n)+ε) +O(1)

i.e., lim inf
r→∞

log[a−1] T (exp[d−1] r, hs ◦ kt)
log[p+m−q−2] T (r, fu ◦ gv)

=∞
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i.e., lim
r→∞

log[a−1] T (exp[d−1] r, hs ◦ kt)
log[p+m−q−2] T (r, fu ◦ gv)

=∞.

This establishes the second part of the theorem.
Now in view of (12) of Case I and (25) of Case IV we get for all sufficiently
large values of r that
(26)

log[a+c−b−2] T (exp[d−1] r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv)

≥ r(λk(c,d)−ε) +O(1)

(ρf (p, q) + ε) r(ρg(m,n)+ε) +O(1)
.

So from (16) and (26) we obtain that

lim inf
r→∞

log[a+c−b−2] T (exp[d−1] r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv)

=∞,

from which the third part of the theorem follows.
Again combining (15) of Case II and (25) of Case IV, it follows for all
sufficiently large values of r that

(27)
log[a+c−b−2] T (exp[d−1] r, hs ◦ kt)

log[p+m−q−2] T (r, fu ◦ gv)
≥ r(λk(c,d)−ε) +O(1)

r(ρg(m,n)+ε) +O(1)
.

Now in view of (16) we obtain from (27) that

lim inf
r→∞

log[a+c−b−2] T (exp[d−1] r, hs ◦ kt)
log[p+m−q−2] T (r, fu ◦ gv)

= ∞

i.e., lim
r→∞

log[a+c−b−2] T (exp[d−1] r, hs ◦ kt)
log[p+m−q−2] T (r, fu ◦ gv)

= ∞.

This proves the fourth part of the theorem.
Thus the theorem follows.

Theorem 2. Let h be meromorphic and g, k be entire such that
λh (a, b) > 0, 0 < ρk <∞ and ρg(m,n) < ρk where m,n, a, b are all pos-
itive integers with m > n and a > b. Let hs, kt, fu, gv be the family of in-
teger translations of the functions h, k, f, g respectively where s, t, u, v ∈
N. Then for every meromorphic function f with 0 < ρf (p, q) < ∞ and
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for any two positive integers p, q with p > q

(i) lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv) + log[m]M (r, gv)

= ∞,

if b = 1 and q > m;

(ii) lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p+m−q−2] T (r, fu ◦ gv) + log[m]M (r, gv)

= ∞,

if b = 1 and q < m;

(iii) lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv) + log[m]M (r, gv)

= ∞,

if q > m and 1 < b < n+ 1;

(iv) lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ µλh (a, b)

(ρf (p, q) + 1) ρg (m,n)
,

if q ≥ m, b = 2, n = 1 and 0 < µ < ρk;

(v) lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ λh (a, b)

(ρf (p, q) + 1) ρg (m,n)
,

if q ≥ m and b > 2, n ≥ 2;

(vi) lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p+m+n−q−2] T (r, fu ◦ gv) + log[m]M (r, gv)

=∞,

if q < m and 1 < b < n+1;

(vii) lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p+m+n−q−2] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ µλh (a, b)

1 + ρg (m,n)
,

if q < m , b = n = 2 and 0 < µ < ρk

and

(viii) lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p+m+n−q−2] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ λh (a, b)

1 + ρg (m,n)
,

if q < m and b = n > 2.

Proof. Since ρg(m,n) < ρk, we can choose ε(> 0) in such a way that

(28) ρg(m,n) + ε < µ < ρk − ε.
Let hs ◦ kt = wl, where w = h ◦ k is a meromorphic function and l ∈ N .
So wl can be written as

wl = {w (z + l) : l ∈ N} .
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Then by (3) we obtain

T (r, wl) = lT (r, w) +
∑
l

(el + e
′

l),

where el, e
′

l → 0 as r →∞,

(29) i.e., T (r, hs ◦ kt) = lT (r, h ◦ k) +
∑
l

(el + e
′

l).

Then by Lemma 2 and from (29) we obtain for a sequence of values of r
tending to infinity,

T (r, hs ◦ kt) ≥ lT (exp(rµ), h) +
∑
l

(el + e
′

l), where 0 < µ < ρk ≤ ∞

i.e., T (r, hs ◦ kt) ≥ lT (exp(rµ), h)[1 +

∑
l

(el + e
′

l)

lT (exp(rµ), h)
]

i.e., log[a−1] T (r, hs ◦ kt) ≥ log[a−1] T (exp(rµ), h) +O(1)

i.e., log[a−1] T (r, hs ◦ kt) ≥ (λh (a, b)− ε) log[b] exp(rµ) +O(1)

(30) i.e., log[a−1] T (r, hs ◦ kt) ≥ (λh (a, b)− ε) log[b−1](rµ) +O(1).

Now the following two cases may arise :
Case I. Let b = 1. Then from (30) we get for a sequence of values of r
tending to infinity that

(31) log[a−1] T (r, hs ◦ kt) ≥ (λh (a, b)− ε)(rµ) +O(1).

Case II. Let b− 1 = l > 0. Then from (30), it follows for a sequence of
values of r tending to infinity that

(32) log[a−1] T (r, hs ◦ kt) ≥ (λh (a, b)− ε) log[l](rµ) +O(1).

Now from the definition of (m,n)-th order of g and from the relation
(5)we have for arbitrary positive ε and for all sufficiently large values of
r,

log[m]M (r, gv) 6 (ρgv(m,n) + ε) log[n] r

i.e., log[m]M (r, gv) 6 (ρg(m,n) + ε) log[n] r.(33)



574 Ritam Biswas

Let q > m. Then we have from (8) and (33) for all sufficiently large
values of r,

(34) log[p−1] T (r, fu ◦ gv) ≤ (ρf (p, q) + ε) (ρg(m,n) + ε) log[n] r+O(1).

Now if b = 1 and q > m, we get from (12), (31), (33) and in view of (28)
for a sequence of values of r tending to infinity,

log[a−1] T (r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ (λh (a, b)− ε)(rµ) +O(1)

(ρf (p, q) + ε) r(ρg(m,n)+ε) + (ρg(m,n) + ε) log[n] r +O(1)

i.e., lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv) + log[m]M (r, gv)

=∞,

which proves the first part of the theorem.
Again we obtain from (15), (28), (31) and (33) for a sequence of values
of r tending to infinity when b = 1 and q < m

log[a−1] T (r, hs ◦ kt)
log[p+m−q−2] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ (λh (a, b)− ε)(rµ) +O(1)

r(ρg(m,n)+ε) + (ρg(m,n) + ε) log[n] r +O(1)

i.e., lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p+m−q−2] T (r, fu ◦ gv) + log[m]M (r, gv)

=∞.

This proves the second part of the theorem.
When b > 1 and q ≥ m, from (32), (33) and (34) we get for a sequence
of values of r tending to infinity,

log[a−1] T (r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ (λh (a, b)− ε) log[l](rµ) +O(1)

(ρf (p, q) + ε) (ρg(m,n) + ε) log[n] r + (ρg(m,n) + ε) log[n] r +O(1)

i.e., lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv) + log[m]M (r, gv)

=∞, if 1 < b < n+1,
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again

lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ µλh (a, b)

(ρf (p, q) + 1) ρg (m,n)
,

if b = 2, n = 1 and 0 < µ < ρk

and also

lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p−1] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ λh (a, b)

(ρf (p, q) + 1) ρg (m,n)
,

if b > 2, n ≥ 2 and 0 < µ < ρk.

This respectively proves the third, fourth and fifth part of the theorem.
Again when b > 1 and q < m, combining (15) , (32) and (33) we obtain
for a sequence of values of r tending to infinity,

log[a−1] T (r, hs ◦ kt)
log[p+m+n−q−2] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ (λh (a, b)− ε) log[l](rµ) +O(1)

log[n] r + (ρg(m,n) + ε) log[n] r +O(1)

i.e., lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p+m+n−q−2] T (r, fu ◦ gv) + log[m]M (r, gv)

=∞, if 1 < b < n+1,

also

lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p+m+n−q−2] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ µλh (a, b)

1 + ρg (m,n)
,

if b = 2, n = 1 and 0 < µ < ρk

and again

lim sup
r→∞

log[a−1] T (r, hs ◦ kt)
log[p+m+n−q−2] T (r, fu ◦ gv) + log[m]M (r, gv)

≥ λh (a, b)

1 + ρg (m,n)
,

if b > 2, n ≥ 2 and 0 < µ < ρk,

from which the sixth, seventh and eighth part of the theorem respectively
follow.
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Theorem 3. Let f and g be two non-constant entire functions such
that
(A) λf (p, q) > 0,
(B) ρ

[l]
g <∞ and

(C) λf◦g(a, b) > 0 where p, q and l are all positive integers with p > q,
a > b. Let fu, gv be the family of integer translations of the functions
f, g respectively where u, v ∈ N. Also let a, b, l ≥ 2. Then

(i) lim sup
r→∞

log[p−1] T (r, fu ◦ gv) · log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−2] T (r, gv) · log[l−1] T (r, gv)

≥ λf (p, q)λf◦g(a, b)

4λ
[l]
g ρ

[l]
g

, if q ≤ l − 1

and

(ii) lim sup
r→∞

log[p−l+q] T (r, fu ◦ gv) · log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−2] T (r, gv) · log[l−1] T (r, gv)

≥ λf◦g(a, b)

4λ
[l]
g ρ

[l]
g

, if q > l − 1.

Proof. Using the inequality T (r, f ◦ g) ≥ 1
3

logM{1
8
M( r

4
, g) + ◦(1), f}

{cf. [6]} we have from (4) for all sufficiently large positive numbers of r
in view of the relation T (r, g) 6 log+M (r, g) ,

log[p−1] T (r, fu ◦ gv) ≥ log[p]M{1

8
M(

r

4
, g) + ◦(1), f}+O(1)

i.e., log[p−1] T (r, fu ◦ gv) ≥ (λf (p, q)− ε) log[q]{1

8
M(

r

4
, g)}+O(1)

i.e., log[p−1] T (r, fu ◦ gv) ≥ (λf (p, q)− ε) log[q]M(
r

4
, g) +O(1)

i.e., log[p−1] T (r, fu ◦ gv) ≥ (λf (p, q)− ε) log[q−1] T (
r

4
, g) +O(1).(35)

Case I. Let q ≤ l − 1.
Then from (35) we obtain for all sufficiently large positive numbers of r,

(36) log[p−1] T (r, fu ◦ gv) ≥ (λf (p, q)− ε) log[l−2] T (
r

4
, g) +O(1).
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Case II. Let q > l − 1.
Then from (35) we have for all sufficiently large positive numbers of r,

log[p−1] T (r, fu ◦ gv) ≥ (λf (p, q)− ε) exp[l−q−1] log[l−2] T (
r

4
, g) +O(1)

i.e., log[p] T (r, fu ◦ gv) ≥ exp[l−q] log[l−2] T (
r

4
, g) +O(1)

(37) i.e., log[p−l+q] T (r, fu ◦ gv) ≥ log[l−2] T (
r

4
, g) +O(1).

Again from the definition of generalized lower proximate order, for given
ε(0 < ε < 1), we get for all large positive numbers of r,

(38) log[l−2] T (
r

4
, g) ≥ (1− ε)

(r
4

)λ[l]g ( r
4)
.

From (3) we may obtain

(39) T (r, gv) = vT (r, g) +
∑
v

(ev + e
′

v),

where ev, e
′
v → 0 as r →∞,

i.e., T (r, gv) = vT (r, g)[1 +

∑
v

(ev + e
′

v)

vT (r, g)
]

i.e., log[l−2] T (r, gv) = log[l−2] T (r, g) +O(1).(40)

Now for given ε(0 < ε < 1), we get for a sequence of positive numbers
of r tending to infinity that

log[l−2] T (r, g) ≤ (1 + ε)rλ
[l]
g (r),

so from (40) we get

log[l−2] T (r, gv) ≤ (1 + ε)rλ
[l]
g (r) +O(1)

i.e.,
log[l−2] T (r, gv)

4λ
[l]
g +δ

≤ (1 + ε)rλ
[l]
g (r) +O(1)

4λ
[l]
g +δ

.(41)

Therefore from (36) of Case I and (38) we have for all sufficiently large
positive numbers of r,

log[p−1] T (r, fu ◦ gv) ≥ (λf (p, q)− ε)(1− ε)
(
r
4

)λ[l]g +δ(
r
4

)λ[l]g +δ−λ[l]g ( r
4)

+O(1).
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Since by Lemma 3,
(
r
4

){λ[l]g +δ−λ[l]g ( r
4)

}
is ultimately an increasing function

of r, it follows from above for all sufficiently large positive numbers of r
that

(42) log[p−1] T (r, fu ◦ gv) ≥ (λf (p, q)− ε)(1− ε)
(r)λ

[l]
g (r)

4λ
[l]
g +δ

+O(1).

Now from (41) and (42) we have for a sequence of positive numbers of r
tending to infinity,

log[p−1] T (r, fu ◦ gv) ≥ (λf (p, q)− ε)
(1− ε)
(1 + ε)

log[l−2] T (r, gv)

4λ
[l]
g +δ

+O(1)

i.e.,
log[p−1] T (r, fu ◦ gv)

log[l−2] T (r, gv)
≥ (1− ε)

(1 + ε)
· (λf (p, q)− ε)

4λ
[l]
g +δ

+
O(1)

log[l−2] T (r, gv)
.

As ε (> 0) and δ (> 0) are arbitrary, we obtain from above that

(43) lim sup
r→∞

log[p−1] T (r, fu ◦ gv)
log[l−2] T (r, gv)

≥ λf (p, q)

4λ
[l]
g

.

Similarly from (37) of Case II and (38) we get for all sufficiently large
values of r,

log[p−l+q] T (r, fu ◦ gv) ≥ (1− ε)
(
r
4

)λ[l]g +δ(
r
4

)λ[l]g +δ−λ[l]g ( r
4)

+O(1).

In view of Lemma 3,
(
r
4

){λ[l]g +δ−λ[l]g ( r
4)

}
is ultimately an increasing func-

tion of r and therefore it follows from above for all sufficiently large
values of r that

log[p−l+q] T (r, fu ◦ gv) ≥ (1− ε)(r)λ
[l]
g (r)

4λ
[l]
g +δ

+O(1).

Now from (41) and above we have for a sequence of positive numbers of
r tending to infinity,

log[p−l+q] T (r, fu ◦ gv) ≥
(1− ε)
(1 + ε)

· log[l−2] T (r, gv)

4λ
[l]
g +δ

+O(1)

i.e.,
log[p−l+q] T (r, fu ◦ gv)

log[l−2] T (r, gv)
≥ (1− ε)

(1 + ε)
· 1

4λ
[l]
g +δ

+
O(1)

log[l−2] T (r, gv)
.
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Since ε (> 0) and δ (> 0) are arbitrary, we obtain from the above that

(44) lim sup
r→∞

log[p−l+q] T (r, fu ◦ gv)
log[l−2] T (r, gv)

≥ 1

4λ
[l]
g

.

Now let fu ◦ gv = ht, where h is a meromorphic function and ht =
{h(z + t) : t ∈ N} . Then from (4) we obtain

T (exp[b−1] r, fu ◦ gv) = tT (exp[b−1] r, f ◦ g) +
∑
t

(et + e
′

t)

i.e., T (exp[b−1] r, fu ◦ gv) = tT (exp[b−1] r, f ◦ g)[1 +

∑
t

(et + e
′

t)

tT (exp[b−1] r, f ◦ g)
]

(45)

i.e., log[a−1] T (exp[b−1] r, fu ◦ gv) = log[a−1] T (exp[b−1] r, f ◦ g) +O(1).

Now for all large positive numbers of r,

log[a−1] T (exp[b−1] r, f ◦ g) ≥ (λf◦g(a, b)− ε) log[b](exp[b−1] r)

i.e., log[a−1] T (exp[b−1] r, f ◦ g) ≥ (λf◦g(a, b)− ε) log r.

Therefore from (45) we obtain

(46) log[a−1] T (exp[b−1] r, fu ◦ gv) ≥ (λf◦g(a, b)− ε) log r

and using (39) we may establish that

log[l−1] T (r, gv) ≤
(
ρ[l]g + ε

)
log r.

Therefore from the above two inequalities we get for all large positive
numbers of r that

log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−1] T (r, gv)

≥ λf◦g(a, b)− ε
ρ
[l]
g + ε

.

As ε (> 0) is arbitrary, it follows from above that

(47) lim inf
r→∞

log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−1] T (r, gv)

≥ λf◦g(a, b)

ρ
[l]
g

.
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Now combining (43) and (47) we obtain that

lim sup
r→∞

log[p−1] T (r, fu ◦ gv) · log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−2] T (r, gv) · log[l−1] T (r, gv)

≥ lim sup
r→∞

log[p−1] T (r, fu ◦ ġv)
log[l−2] T (r, gv)

· lim inf
r→∞

log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−1] T (r, gv)

≥ λf (p, q)λf◦g(a, b)

4λ
[l]
g ρ

[l]
g

.

This proves the first part of the theorem.
Again combining from (44) and (47) we get that

lim sup
r→∞

log[p−l+q] T (r, fu ◦ gv) · log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−2] T (r, gv) · log[l−1] T (r, gv)

≥ lim sup
r→∞

log[p−l+q] T (r, fu ◦ gv)
log[l−2] T (r, gv)

· lim inf
r→∞

log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−1] T (r, gv)

≥ 1

4λ
[l]
g

· λf◦g(a, b)
ρ
[l]
g

i.e., lim sup
r→∞

log[p−l+q] T (r, fu ◦ gv) · log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−2] T (r, gv) · log[l−1] T (r, gv)

≥ λf◦g(a, b)

4λ
[l]
g ρ

[l]
g

.

Thus the second part of the theorem is established.

Corollary 1. Under the same conditions of Theorem 3 if m− n =
l−1 and ρg(m,n) = 1 where m and n are any two positive integers then

(i) lim sup
r→∞

log[p−1] T (r, fu ◦ gv) · log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−2] T (r, gv) · log[m−1] T (exp[n−1] r, gv)

≥ λf (p, q) · λf◦g(a, b)
4λ

[l]
g

for q ≤ l − 1
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and

(ii) lim sup
r→∞

log[p−l+q] T (r, fu ◦ gv) · log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−2] T (r, gv) · log[m−1] T (exp[n−1] r, gv)

≥ λf◦g(a, b)

4λ
[l]
g

for q > l − 1.

Proof. Since ρg(m,n) = 1, by Lemma 4 it follows for all sufficiently
large positive numbers of r that

log[m−1] T (exp[n−1] r, gv) ≤ (1 + ε) log[n] exp[n−1] r

i.e., log[m−1] T (exp[n−1] r, gv) ≤ (1 + ε) log r.(48)

Therefore from (46) and (48) we get for all large positive numbers of r
that

log[a−1] T (exp[b−1] r, fu ◦ gv)
log[m−1] T (exp[n−1] r, gv)

≥ λf◦g(a, b)− ε
1 + ε

.

As ε (> 0) is arbitrary, it follows from above that

(49) lim inf
r→∞

log[a−1] T (exp[b−1] r, fu ◦ gv)
log[m−1] T (exp[n−1] r, gv)

≥ λf◦g(a, b).

Now combining (43) and (49) we obtain that

lim sup
r→∞

log[p−1] T (r, fu ◦ gv) · log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−2] T (r, gv) · log[m−1] T (exp[n−1] r, gv)

≥ lim sup
r→∞

log[p−1] T (r, fu ◦ gv)
log[l−2] T (r, gv)

· lim inf
r→∞

log[a−1] T (exp[b−1] r, fu ◦ gv)
log[m−1] T (exp[n−1] r, gv)

≥ λf (p, q)λf◦g(a, b)

4λ
[l]
g

.

This proves the first part of the corollary.
Again combining from (44) and (49) we get that

lim sup
r→∞

log[p−l+q] T (r, fu ◦ gv) · log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−2] T (r, gv) · log[m−1] T (exp[n−1] r, gv)

≥ lim sup
r→∞

log[p−l+q] T (r, fu ◦ gv)
log[l−2] T (r, gv)

· lim inf
r→∞

log[a−1] T (exp[b−1] r, fu ◦ gv)
log[m−1] T (exp[n−1] r, gv)

≥ 1

4λ
[l]
g

· λf◦g(a, b)
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i.e., lim sup
r→∞

log[p−l+q] T (r, fu ◦ gv) · log[a−1] T (exp[b−1] r, fu ◦ gv)
log[l−2] T (r, gv) · log[m−1] T (exp[n−1] r, gv)

≥ λf◦g(a, b)

4λ
[l]
g

.

Thus the second part of the corollary is established.
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