DOI QR코드

DOI QR Code

Dichloroacetate Inhibits the Proliferation of a Human Anaplastic Thyroid Cancer Cell Line via a p53-independent Pathway

Dichloroacetate의 p53 비의존적 경로를 통한 인간 역분화 갑상선 암세포주의 성장억제 효과

  • KC, Yam Bahadur (Department of Biomedical Science, Daegu Catholic University) ;
  • Poudel, Sunil (Department of Pharmaceutical Science and Technology, Daegu Catholic University) ;
  • Jeon, Eon Ju (Department of Internal Medicine, Daegu Catholic University School of Medicine) ;
  • Shon, Ho Sang (Department of Internal Medicine, Daegu Catholic University School of Medicine) ;
  • Byun, Sung June (Animal Biotechnology Division, National Institute of Animal Science (NIAS), RDA) ;
  • Jeoung, Nam Ho (Department of Pharmaceutical Science and Technology, Daegu Catholic University)
  • 얌 바하더 케이씨 (대구가톨릭대학교 의생명과학과) ;
  • 수닐 포우델 (대구가톨릭대학교 제약산업공학과) ;
  • 전언주 (대구가톨릭대학교 의과대학 내과) ;
  • 손호상 (대구가톨릭대학교 의과대학 내과) ;
  • 변승준 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 정남호 (대구가톨릭대학교 제약산업공학과)
  • Received : 2018.11.03
  • Accepted : 2018.11.13
  • Published : 2018.12.30

Abstract

Occurrence of the Warburg effect in solid tumors causes resistance to cancer chemotherapy, and targeting energy metabolisms such as aerobic glycolysis is a potential strategy for alternative treatment. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), shifts glucose metabolism from aerobic glycolysis to oxidative phosphorylation (OxPhos) in many cancers. In this study, we investigated the anticancer effect of DCA on a human anaplastic thyroid cancer (ATC) cell line, 8505C. We found that DCA selectively inhibits cell proliferation of the 8505C line but not of a normal thyroid line. In 8505C, the cell cycle was arrested at the G1/S phase with DCA treatment as a result of decreased antiapoptotic proteins such as $HIF1{\alpha}$, PDK1, and Bcl-2 and increased proapoptotic proteins such as Bax and p21. DCA treatment enhanced the production of reactive oxygen species which consequently induced cell cycle arrest and apoptosis. Interestingly, DCA treatment not only reduced lactate production but also increased the expression of sodium-iodine symporter, indicating that it restores the OxPhos of glucose metabolism and the iodine metabolism of the ATC. Taken together, our findings suggest that PDK inhibitors such as DCA could be useful anticancer drugs for the treatment of ATC and may also be helpful in combination with chemotherapy and radiotherapy.

Warburg 효과의 발생은 고형암에서 화학적 항암제의 내성을 발생시킨다. 따라서 호기성 해당과정과 같은 에너지 대사과정은 암 치료의 중요한 표적으로 알려져 있다. Pyruvate dehydrogenase kinase (PDK) 활성 억제물질로 알려진 dichloroacetate (DCA)는 많은 암세포에서 포도당의 호기성 해당과정을 산화적인산화 과정으로 전환시킬 수 있음이 보고되었다. 이 연구는 치료가 매우 어렵다고 알려진 인간 역분화 갑상선 암세포주인 8505C의 성장에 미치는 DCA효과를 조사하였다. DCA는 정상 갑상선 세포주의 성장에는 영향을 주지 않은 반면 8505C 세포주의 성장을 특이적으로 저해하였다. DCA의 처리에 의해 8505C 세포주는 $HIF1{\alpha}$, PDK1, Bcl-2와 같은 항-세포자살 관련 단백질들의 발현이 감소하고, Bax와 p21과 같은 세포자살 유도 단백질과 세포주기 억제 단백질의 증가로 인하여 세포주기 정지와 세포자살 유도에 의해 성장이 억제되었다. 이런 세포의 변화는 DCA 처리에 의한 활성산소족의 생산이 증가하고, 포도당 대사가 호기성 해당과정에서 산화적인산화 과정으로 전환되었기 때문이란 것을 확인하였다. 흥미롭게도, DCA는 포도당 대사과정의 변화뿐만 아니라 sodium/iodine symporter (NIS)의 발현양도 증가시킨다는 것을 확인하였다. 이 연구의 결과로 PDK 활성 저해제는 치료하기 힘든 역분화 갑상선 암 치료제로 이용할 수 있고, 또한 역분화 갑상선 암에 대한 방사능 치료의 효능을 높일 수 있을 것으로 기대된다.

Keywords

SMGHBM_2018_v28n12_1469_f0001.png 이미지

Fig. 1. Growth of thyroid cancer cells and effect of DCA on cell viability.

SMGHBM_2018_v28n12_1469_f0002.png 이미지

Fig. 2. Effect of DCA on cell cycle profile and expression of various genes.

SMGHBM_2018_v28n12_1469_f0003.png 이미지

Fig. 3. NAC pretreatment reverses the effect of DCA.

SMGHBM_2018_v28n12_1469_f0004.png 이미지

Fig. 4. DCA effect on p21 promoter activity, lactate production, and NIS expression.

References

  1. Are, C. and Shaha, A. R. 2006. Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann. Surg. Oncol. 13, 453-464. https://doi.org/10.1245/ASO.2006.05.042
  2. Atkuri, K. R., Mantovani, J. J., Herzenberg, L. A. and Herzenberg, L. A. 2007. N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol. 7, 355-359. https://doi.org/10.1016/j.coph.2007.04.005
  3. Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C. T., Lopaschuk, G. D., Puttagunta, L., Bonnet, S., Harry, G., Hashimoto, K., Porter, C. J., Andrade, M. A., Thebaud, B. and Michelakis, E. D. 2007. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37-51. https://doi.org/10.1016/j.ccr.2006.10.020
  4. Bowker-Kinley, M. M., Davis, W. I., Wu, P., Harris, R. A. and Popov, K. M. 1998. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 329 (Pt 1), 191-196. https://doi.org/10.1042/bj3290191
  5. Carrasco, N. 1993. Iodide transport in the thyroid gland. Biochim. Biophys. Acta. 1154, 65-82. https://doi.org/10.1016/0304-4157(93)90017-I
  6. Coelho, R. G., Fortunato, R. S. and Carvalho, D. P. 2018. Metabolic reprogramming in thyroid carcinoma. Front. Oncol. 8, 82 https://doi.org/10.3389/fonc.2018.00082
  7. Falck Miniotis, M., Arunan, V., Eykyn, T. R., Marais, R., Workman, P., Leach, M. O. and Beloueche-Babari, M. 2013. MEK1/2 inhibition decreases lactate in BRAF-driven human cancer cells. Cancer Res. 73, 4039-4049. https://doi.org/10.1158/0008-5472.CAN-12-1969
  8. Gartel, A. L. and Tyner, A. L. 2002. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol. Cancer Ther. 1, 639-649.
  9. Gutmann, I. and Wahlefeld, A. W. 1974. Lactate determination with lactate dehydrogenase and NAD, pp. 1416-1468. In: Methods of Enzymatic Analysis, Bergmeyer HU (2ed.), Academic Press, Inc.: New York, USA.
  10. Harris, R. A., Bowker-Kinley, M. M., Huang, B. and Wu, P. 2002. Regulation of the activity of the pyruvate dehydrogenase complex. Adv. Enzyme Regul. 42, 249-259. https://doi.org/10.1016/S0065-2571(01)00061-9
  11. Ito, T., Seyama, T., Hayashi, Y., Dohi, K., Mizuno, T., Iwamoto, K., Tsuyama, N., Nakamura, N. and Akiyama, M. 1994. Establishment of 2 human thyroid-carcinoma cell-lines (8305c, 8505c) bearing p53 gene-mutations. Int. J. Oncol. 4, 583-586.
  12. Jeoung, N. H. 2015. Pyruvate dehydrogenase kinases: Therapeutic targets for diabetes and cancers. Diabetes Metab. J. 39, 188-197. https://doi.org/10.4093/dmj.2015.39.3.188
  13. Kawauchi, K., Araki, K., Tobiume, K. and Tanaka, N. 2008. p53 regulates glucose metabolism through an IKK-NFkappaB pathway and inhibits cell transformation. Nat. Cell Biol. 10, 611-618. https://doi.org/10.1038/ncb1724
  14. Kim, J. W., Tchernyshyov, I., Semenza, G. L. and Dang, C. V. 2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
  15. Manzella, L., Stella, S., Pennisi, M. S., Tirro, E., Massimino, M., Romano, C., Puma, A., Tavarelli, M. and Vigneri, P. 2017. New insights in thyroid cancer and p53 family proteins. Int. J. Mol. Sci. 18, 1325. https://doi.org/10.3390/ijms18061325
  16. Lee, M. and Yoon, J. H. 2015. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J. Biol. Chem. 6, 148-161. https://doi.org/10.4331/wjbc.v6.i3.148
  17. Liou, G. Y. and Storz, P. 2010. Reactive oxygen species in cancer. Free Radic. Res. 44, 479-496. https://doi.org/10.3109/10715761003667554
  18. Lodygin, D., Menssen, A. and Hermeking, H. 2002. Induction of the Cdk inhibitor p21 by LY83583 inhibits tumor cell proliferation in a p53-independent manner. J. Clin. Invest. 110, 1717-1727. https://doi.org/10.1172/JCI0216588
  19. Lopez-Lazaro, M. 2008. The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med. Chem. 8, 305-312. https://doi.org/10.2174/187152008783961932
  20. Mian, C., Lacroix, L., Alzieu, L., Nocera, M., Talbot, M., Bidart, J. M., Schlumberger, M. and Caillou, B. 2001. Sodium iodide symporter and pendrin expression in human thyroid tissues. Thyroid 11, 825-830. https://doi.org/10.1089/105072501316973073
  21. Muntean, D. M., Sturza, A., Danila, M. D., Borza, C., Duicu, O. M. and Mornos, C. 2016. The role of mitochondrial reactive oxygen species in cardiovascular injury and protective strategies. Oxid. Med. Cell. Longev. 2016, 8254942.
  22. Nguyen, Q. T., Lee, E. J., Huang, M. G., Park, Y. I., Khullar, A. and Plodkowski, R. A. 2015. Diagnosis and treatment of patients with thyroid cancer. Am. Health. Drug Benefits 8, 30-40.
  23. Nikiforov, Y. E. 2004. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr. Pathol. 15, 319-327. https://doi.org/10.1385/EP:15:4:319
  24. Oren, M. 2003. Decision making by p53: life, death and cancer. Cell Death. Differ. 10, 431-442. https://doi.org/10.1038/sj.cdd.4401183
  25. Pang, Y., Qin, G., Wu, L., Wang, X. and Chen, T. 2016. Artesunate induces ROS-dependent apoptosis via a Bax-mediated intrinsic pathway in Huh-7 and Hep3B cells. Exp. Cell. Res. 347, 251-260. https://doi.org/10.1016/j.yexcr.2016.06.012
  26. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. and Denko, N. C. 2006. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197. https://doi.org/10.1016/j.cmet.2006.01.012
  27. Pertega-Gomes, N., Felisbino, S., Massie, C. E., Vizcaino, J. R., Coelho, R., Sandi, C., Simoes-Sousa, S., Jurmeister, S., Ramos-Montoya, A., Asim, M., Tran, M., Oliveira, E., Lobo da Cunha, A., Maximo, V., Baltazar, F., Neal, D. E. and Fryer, L. G. 2015. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J. Pathol. 236, 517-530. https://doi.org/10.1002/path.4547
  28. Qiu, X., Forman, H. J., Schonthal, A. H. and Cadenas, E. 1996. Induction of p21 mediated by reactive oxygen species formed during the metabolism of aziridinylbenzoquinones by HCT116 cells. J. Biol. Chem. 271, 31915-31921. https://doi.org/10.1074/jbc.271.50.31915
  29. Quiros, R. M., Ding, H. G., Gattuso, P., Prinz, R. A. and Xu, X. 2005. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer 103, 2261-2268. https://doi.org/10.1002/cncr.21073
  30. Ringel, M. D., Anderson, J., Souza, S. L., Burch, H. B., Tambascia, M., Shriver, C. D. and Tuttle, R. M. 2001. Expression of the sodium iodide symporter and thyroglobulin genes are reduced in papillary thyroid cancer. Mod. Pathol. 14, 289-296. https://doi.org/10.1038/modpathol.3880305
  31. Sanchez, W. Y., McGee, S. L., Connor, T., Mottram, B., Wilkinson, A., Whitehead, J. P., Vuckovic, S. and Catley, L. 2013. Dichloroacetate inhibits aerobic glycolysis in multiple myeloma cells and increases sensitivity to bortezomib. Br. J. Cancer 108, 1624-1633. https://doi.org/10.1038/bjc.2013.120
  32. Shahrzad, S., Lacombe, K., Adamcic, U., Minhas, K. and Coomber, B. L. 2010. Sodium dichloroacetate (DCA) reduces apoptosis in colorectal tumor hypoxia. Cancer Lett. 297, 75-83. https://doi.org/10.1016/j.canlet.2010.04.027
  33. Spitzweg, C., Harrington, K. J., Pinke, L. A., Vile, R. G. and Morris, J. C. 2001. Clinical review 132: The sodium iodide symporter and its potential role in cancer therapy. J. Clin. Endocrinol. Metab. 86, 3327-3335. https://doi.org/10.1210/jcem.86.7.7641
  34. Stacpoole, P. W., Kurtz, T. L., Han, Z. and Langaee, T. 2008. Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv. Drug Deliv. Rev. 60, 1478-1487. https://doi.org/10.1016/j.addr.2008.02.014
  35. Tavares, C., Coelho, M. J., Eloy, C., Melo, M., da Rocha, A. G., Pestana, A., Batista, R., Ferreira, L. B., Rios, E., Selmi-Ruby, S., Cavadas, B., Pereira, L., Sobrinho-Simoes, M. and Soares, P. 2018. NIS expression in thyroid tumors, relation with prognosis clinicopathological and molecular features. Endocr. Connect. 7, 78-90. https://doi.org/10.1530/EC-17-0302
  36. Warburg, O. 1956. On the origin of cancer cells. Science 123, 309-314. https://doi.org/10.1126/science.123.3191.309
  37. Zhang, Z., He, H., Chen, F., Huang, C. and Shi, X. 2002. MAPKs mediate S phase arrest induced by vanadate through a p53-dependent pathway in mouse epidermal C141 cells. Chem. Res. Toxicol. 15, 950-956. https://doi.org/10.1021/tx0255018