Fig. 1. Effects of salicylate on the proliferation and viability of POMSCs.
Fig. 2. Effects of salicylate on osteogenic differentiation of POMSCs.
Fig. 3. Effects of salicylate on mitochondrial biogenesis during osteogenic differentiation of POMSCs.
Fig. 4. Visualization and quantitation of mitochondrial biogenesis during osteogenic differentiation of POMSCs.
참고문헌
- Agata, H., Asahina, I., Yamazaki, Y., Uchida, M., Shinohara, Y., Honda, M. J., Kagami, H. and Ueda, M. 2007. Effective bone engineering with periosteum-derived cells. J. Dent. Res. 86, 79-83. https://doi.org/10.1177/154405910708600113
- Baroni, M. D., Colombo, S. and Martegani, E. 2018. Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. Microb. Cell 5, 344-356. https://doi.org/10.15698/mic2018.07.640
- Bergman, O. and Ben-Shachar, D. 2016. Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: Possible interactions with cellular processes. Can. J. Psychiatry 61, 457-469. https://doi.org/10.1177/0706743716648290
- Breitbart, A. S., Grande, D. A., Kessler, R., Ryaby, J. T., Fitzsimmons, R. J. and Grant, R. T. 1998. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast. Reconstr. Surg. 101, 567-574. https://doi.org/10.1097/00006534-199803000-00001
-
Chen, G., Deng, C. and Li, Y. P. 2012. TGF-
${\beta}$ and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272-288. https://doi.org/10.7150/ijbs.2929 - Chung, J. E., Park, J. H., Yun, J. W., Kang, Y. H., Park, B. W., Hwang, S. C., Cho, Y. C., Sung, I. Y., Woo, D. K. and Byun, J. H. 2016. Cultured human periosteum-derived cells can differentiate into osteoblasts in a perioxisome proliferator-activated receptor gamma-mediated fashion via bone morphogenetic protein signaling. Int. J. Med. Sci. 13, 806-818. https://doi.org/10.7150/ijms.16484
- Ferretti, C. and Mattioli-Belmonte, M. 2014. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J. Stem Cells 6, 266-277. https://doi.org/10.4252/wjsc.v6.i3.266
- Hah, Y. S., Joo, H. H., Kang, Y. H., Park, B. W., Hwang, S. C., Kim, J. W., Sung, I. Y., Rho, G. J., Woo, D. K. and Byun, J. H. 2014. Cultured human periosteal-derived cells have inducible adipogenic activity and can also differentiate into osteoblasts in a perioxisome proliferator-activated receptor-mediated fashion. Int. J. Med. Sci. 11, 1116-1128. https://doi.org/10.7150/ijms.9611
- Hutmacher, D. W. and Sittinger, M. 2003. Periosteal cells in bone tissue engineering. Tissue Eng. 9, 45-64. https://doi.org/10.1089/10763270360696978
- Huttemann, M., Lee, I., Samavati, L., Yu, H. and Doan, J. W. 2007. Regulation of mitochondrial oxidative phosphorylation through cell signaling. BBA 1773, 1701-1720.
- Ito, K. and Suda, T. 2014. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243-256. https://doi.org/10.1038/nrm3772
- Kakehata, S. and Santos-Sacchi, J. 1996. Effects of salicylate and lanthanides on outer hair cell motility and associated gating charge. J. Neurosci. 16, 4881-4889. https://doi.org/10.1523/JNEUROSCI.16-16-04881.1996
- Mao, A. S. and Mooney, D. J. 2015. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA. 112, 14452-14459. https://doi.org/10.1073/pnas.1508520112
- Oryan, A., Kamali, A., Moshiri, A. and Eslaminejad, B. M. 2017. Role of mesenchymal stem cells in bone regenerative medicine: What is the evidence? Cells Tissues Organs 204, 59-83. https://doi.org/10.1159/000469704
- Park, B. W., Hah, Y. S., Kim, D. R., Kim, J. R. and Byun, J. H. Osteogenic phenotypes and mineralization of cultured human periosteal-derived cells. Arch. Oral Biol. 52, 983-989.
- Park, B. W., Hah, Y. S., Kim, D. R., Kim, J. R. and Byun, J. H. 2008. Vascular endothelial growth factor expression in cultured periosteal-derived cells. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 105, 554-560. https://doi.org/10.1016/j.tripleo.2007.08.018
- Park, H. C., Son, Y. B., Lee, S. L., Rho, G. J., Kang, Y. H., Park, B. W., Byun, S. H., Hwang, S. C., Cho, I. A., Cho, Y. C., Sung, I. Y., Woo, D. K. and Byun, J. H. 2017. Effects of osteogenic-conditioned medium from human periosteumderived cells on osteoclast differentiation. Int. J. Med. Sci. 14, 1389-1401. https://doi.org/10.7150/ijms.21894
- Park, J. H., Park, B. W., Kang, Y. H., Byun, S. H., Hwang, S. C., Kim, D. R., Woo D. K. and Byun, J. H. 2017. Lin28a enhances in vitro osteoblastic differentiation of human periosteum-derived cells. Cell Biochem. Funct. 35, 497-509. https://doi.org/10.1002/cbf.3305
- Rammelt, S., Neumann, M., Hanisch, U., Reinstorf, A., Pompe, W., Zwipp, H. and Biewener, A. 2005. Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J. Biomed. Mater. Res. A. 73, 284-294.
- Ringe, J., Leinhase, I., Stich, S., Loch, A., Neumann, K., Haisch, A., Haupl, T., Manz, R., Kaps, C. and Sittinger, M. 2008. Human mastoid periosteum-derived stem cells: promising candidates for skeletal tissue engineering. J. Tissue Eng. Regen. Med. 2, 136-146. https://doi.org/10.1002/term.75
- Rhy, Y. M., Hah, Y. S., Park, B. W., Kim, D. R., Roh, G. S., Kim, J. R., Kim, U. K., Rho, G. J., Maeng, G. H. and Byun, J. H. 2011. Osteogenic differentiation of human periostealderived cells in a three-dimensional collagen scaffold. Mol. Biol. Rep. 38, 2887-2894. https://doi.org/10.1007/s11033-010-9950-3
- Schafer, R., Spohn, G. and Baer, P. C. 2016. Mesenchymal stem/stromal cells in regenerative medicine: Can preconditioning strategies improve therapeutic efficacy? Transfus. Med. Hemother. 43, 256-267. https://doi.org/10.1159/000447458
- Steinberg, G. R., Dandapani, M. and Hardie, D. G. 2013. AMPK: mediating the metabolic effects of salicylate-based drugs? Trends Endocrinol. Metab. 24, 481-487. https://doi.org/10.1016/j.tem.2013.06.002
- Shum, L. C., White, N. S., Mills, B. N., Bentley, K. L. and Eliseev, R. A. 2016. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev. 25, 114-122. https://doi.org/10.1089/scd.2015.0193
- Shyam, H., Singh, S. K., Kant, R. and Saxena, S. K. 2017. Mesenchymal stem cells in regenerative medicine: a new paradigm for degenerative bone diseases. Regen. Med. 12, 111-114. https://doi.org/10.2217/rme-2016-0162
-
Yan, Y., Yang, X., Zhao, T., Zou, Y., Li, R. and Xu, Y. 2017. Salicylates promote mitochondrial biogenesis by regulating the expression of PGC-1
${\alpha}$ in murine 3T3-L1 pre-adipocytes. Biochem. Biophys. Res. Commun. 491, 436-441. https://doi.org/10.1016/j.bbrc.2017.07.074 - Yoon, D. K., Park, J. S., Rho, G. J., Lee, H. J., Sung, I. Y., Song, J. H., Park, B. W., Kang, Y. H., Byun, S. H., Hwang, S. C., Woo, D. K., Cho, Y. C. and Byun, J. H. 2017. The involvement of histone methylation in osteoblastic differentiation of human periosteum-derived cells cultured in vitro under hypoxic conditions. Cell Biochem. Funct. 35, 441-452. https://doi.org/10.1002/cbf.3302