Fig. 1. Artificial organic decomposition products formed by fermented organic particles by microbial strain Bacillus sp.
Fig. 2. Photographs of leptocephalus larvae fed each feed type shown in Table 1. Photographs A, B, C, and D show larvae fed each type of feed (feed type A, B, C, and D) listed in Table 1. Photograph E shows larvae fed dogfish shark egg yolk-based feed received from the Nationcal Institute of Fisheries Science.
Fig. 3. Changes in survival rates of leptocephalus fed each diet (A, B, C, D-type and dogfish shark egg yolk-based diet) shown in Table 1 and from day 20 after hatching.
Fig. 4. Changes in body length of leptocephalus each diet (A, B, C, D-type and dogfish shark egg yolk-based diet) shown in Table 1 from day 20 after hatching.
Table 1. Feed formulation table for investigating the survival effect of diets on leptocephalus larvae of eel (A. japonica) from day 20 after hatching
Table 2. Amino acid content and protein concentration of each diet listed in Table 1
Table 3. Fatty acid content of each diet listed in Table 1
참고문헌
- Alldredge, A. L. and Youngbluth, M. J. 1985. The significance of macroscopic aggregates (marine snow) as sites for heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic. Deep Sea Research Part A. Oceanogr. Res. Pap. 32, 1545-1456.
- Arndt, S., Jorgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D. and Regnier, P. 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Science Rev. 123, 53-86. https://doi.org/10.1016/j.earscirev.2013.02.008
- Avnimelech, Y. 2006, Bio-filters: The need for an new comprehensive approach. Aquac. Eng. 34, 172-178. https://doi.org/10.1016/j.aquaeng.2005.04.001
- Cowen, J. P. and Holloway, C. F. 1996. Structural and chemical analysis of marine aggregates: in situ macrophotography and laser confocal and electron microscopy. Mar. Biol. 126, 163-174. https://doi.org/10.1007/BF00347441
- Crab, R., Chielens, B., Wille, M., Bossier, P. and Verstraete, W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac. Res. 41, 559-567. https://doi.org/10.1111/j.1365-2109.2009.02353.x
- Fordham, S., Fowler, S. L., Coelho, R., Goldman, K. J. and Francis, M. 2006. Squalus Acanthias. IUCN Red List of Threatened Species. Version 2010.1. Available at http://www.iucnredlist.org.
- Furuita, H., Takeuchi, T., Watanabe, T., Fujimoto, H., Sekiya, S. and Imaizumi, K. 1996. Requirements of larval yellowtail for eicosapentaenoic acid, docosahexaenoic acid, and n-3 highly unsaturated fatty acid. Fish. Sci. 62, 372-379. https://doi.org/10.2331/fishsci.62.372
- Izquierdo, M. S. 1996. Essential fatty acid requirements of cultured marine fish larvae. Aquac. Nutr. 2, 183-191. https://doi.org/10.1111/j.1365-2095.1996.tb00058.x
- Kagawa, H., Tanaka, H., Ohta, H., Unuma, T. and Nomura, K. 2005. The first success of glass eel production in the world: basic biology on fish reproduction advances new applied technology in aquaculture. Fish. Physiol. Biochem. 31, 193-199. https://doi.org/10.1007/s10695-006-0024-3
- Kim, D. J., Kim, E. H., Park, M. W., Cho, Y. C. and Lim, S. G. 2006a. Plasma sex steroid hormone profiles in artificially maturing wild eel, Anguilla japonica. J. Aquac. 19, 267-274.
- Kim, D. J., Lee, N. S., Kim, K. K. and Chang, D. S. 2014. Effects of starvation, water temperature, and water flow on the metamorphosis of leptocephalus of Japanese eel Anguilla japonica. Kor. J. Fish. Aquat. Sci. 47, 597-602.
- Kim, E. O., Bae, J. Y., Lim, S. G., Son, M. H., Park, M. W., Park, M. S., Cho, Y. C. and Kim, D. J. 2006b. Plasma Sex Steroid Hormone Profiles and Testicular Development in Artificially Maturing Cultured Mille Eel, Anguilla japonica. Kor. J. Fish. Aquac. Sci. 39, 466-471.
- Kim, S. K., Lee, B. I., Kim, D. J. and Lee, N. S. 2014. Development of the slurry type diet for the growing leptocephalus, eel larvae (Anguilla japonica). J. Fish. Mar. Sci. Educ. 26, 1209-1216.
- KiOrboe, T. 2000. Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnol. Oceanogr. 45, 479-484. https://doi.org/10.4319/lo.2000.45.2.0479
- Lin, H. R., Xie, G., Zhang, L. H., Wang, X. D. and Chen, L. X. 1998. Artificial induction of gonadal maturation and ovulation in the Japanese eel (Anguilla japonica, T ETS.). Bull. Fr. Peche. Piscic. 349, 163-176.
- Ma, J., Shao, Q., Xu, Z. and Zhou, F. 2013. Effect of Dietary n-3 highly unsaturated fatty acids on growth, body composition and fatty acid profiles of juvenile black seabream, Acanthopagrus schlegeli (Bleeker) J. World Aquac. Soc. 44, 311-325. https://doi.org/10.1111/jwas.12032
- Masuda, Y., Imaizumi, H., Oda, K., Hashimoto, H., Teruya, K. and Usuki, H. 2011. Japanese eel Anguilla japonica larvae can metamorphose into glass eel within 131 days after hatcing in captivity. Nippon. Suisan. Gakkaishi. 77, 416-418. (in Japanese with English abstract) https://doi.org/10.2331/suisan.77.416
- Masuda, Y., Jinbo, T., Imaizumi, H., Furuita, H., Matsunari, H., Murashita, K., Fujimoto, H., Nagao, J. and Kawakami, Y. 2013. A step forward in development of fish protein hydrolysate-based diets for larvae of Japanese eel Anguilla japonica. Fish. Sci. 79, 681-688. https://doi.org/10.1007/s12562-013-0637-2
- Masuda, Y., Yatabe, T., Matsunari, H., Furuita, H., Kamoshida, M., Shima, Y. and Kuwada, H. 2016. Rearing of larvae of Japanese eel Anguilla japonica to metamorphosis into glass eel by feeding with fish protein hydrolysate-based diets. Nippon. Suisan. Gakkaishi. 82, 131-133. (in Japanese with English abstract) https://doi.org/10.2331/suisan.15-00060
- Miller, M. J. 2009. Ecology of anguilliform leptocephali : remarkable transparent fish larvae of the ocean surface layer. Aqua-Bio Sci. Monogr. 2, 1-94.
- Miller, M. J., Otake, T. Aoyama, J. Wouthuyzen, S., Suhartt, S., Sugeha, H. Y. and Tshkamoto, K. 2011. Observation of gut contents of leptocephali in the north equatorial current and tomini bay, Indonesia. Coast. Mar. Sci. 35, 277-288.
- Miller, M. J., Chikaraishi, Y., Ogawa, N. O., Yamada, Y., Tsukamoto, K. and Ohkouchi, N. 2013. A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol. Lett. 9, 20120826.
- Mochioka, N. and Iwamizu, M. 1996. Diet of anguilloid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. Mar. Biol. 125, 447-452.
- Murashita, K., Furuita, H., Matsunari, H., Yamamoto, T., Awaji, M., Nomura, K., Nagao, J. and Tanaka, H. 2013. Partial characterization and ontogenetic development of pancreatic digestive enzymes in Japanese eel Anguilla japonica larvae. Fish. Physiol. Biochem. 39, 895-905. https://doi.org/10.1007/s10695-012-9749-3
- Lee, N. S., Kim, D. J., Lee, B. L., Kim, S. K. and Kim, K. K. 2015. Distribution of ghrelin immunoreactivity in artificially reared Japanese eel, Anguilla japonica, leptocephalus and metamorphosed glass eel. J. Environ. Biol. 36, 521.
- Ohta, H., Kagawa, H., Tanaka, H., Okuzawa, K., Iinuma, N. and Hirose, K. 1997. Artificial induction of maturation and fertilization in the Japanese eel, Anguilla japonica. Fish Physiol. Biochem. 17, 163-169. https://doi.org/10.1023/A:1007720600588
- Okamura, A., Yamada, Y., Horie, N., Mikawa, N., Tanaka, S., Kobayashi, H. and Tsukamoto, K. 2013. Hen egg yolk and skinned krill as possible foods for rearing leptocephalus larvae of Anguilla japonica Temminck & S chlegel. Aquac. Res. 44, 1531-1538. https://doi.org/10.1111/j.1365-2109.2012.03160.x
- Park, J. C., Kwon, O. N., Hong, S. E., An, H. C., Bae, J. H., Park, M. S. and Park, H. G. 2013. Changes in the growth and biochemical composition of Nannochloropsis sp. cultures using light-emitting diodes. Kor. J. Fish. Aquac. Sci. 46, 259-265.
- Pedersen, B. H., Ueberschar, B. and Kurokawa, T. 2003. Digestive response and rates of growth in pre-leptocephalus larvae of the Japanese eel Anguilla japonica reared on artificial diets. Aquaculture 215, 321-338. https://doi.org/10.1016/S0044-8486(02)00065-0
- Pfeiler, E. 1999. Developmental physiology of elopomorph leptocephali. Comparative Biochemistry and Physiology. Part A, Mol. Integr. Physiol. 123, 113-128. https://doi.org/10.1016/S1095-6433(99)00028-8
- Salhi, M., Izquierdo, M. S., Hernandez-Cruz, C. M., Gonzalez, M. and Fernandez-Palacios, H. 1994. Effect of lipid and n-3 HUFA levels in microdiets on growth, survival and fatty acid composition of larval gilthead seabream (Sparus aurata). Aquaculture 124, 275-282. https://doi.org/10.1016/0044-8486(94)90389-1
- Skoog, A., Alldredge, A., Passow, U., Dunne, J. and Murray, J. 2008. Neutral aldoses as source indicators for marine snow. Mar. Chem. 108, 195-206. https://doi.org/10.1016/j.marchem.2007.11.008
- Tanaka, H., Kagawa, H. and Ohta, H. 2001. Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture 201, 51-60. https://doi.org/10.1016/S0044-8486(01)00553-1
- Tanaka, H. 2003. Techniques for larval rearing. In: Eel Biology (ed. By K. Aida, K. Tsukamoto & K. Yamauchi), pp. 427-434. Springer-Verlag, Tokyo, Japan.
- Tanaka, H., Kagawa, H., Ohta, H., Unuma, T. and Nomura, K. 2003. The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol. Biochem. 28, 493-497. https://doi.org/10.1023/B:FISH.0000030638.56031.ed
- Tansel, B. 2018. Morphology, composition and aggregation mechanisms of soft bioflocs in marine snow and activated sludge: A comparative review. J. Environ. Manage. 205, 231-243. https://doi.org/10.1016/j.jenvman.2017.09.082
- Tecchio, S., Coll, M., Christensen, V., Ramirez-Llodra, E. and Sarda, F. 2013. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea. Deep Sea Research Part I: Oceanographic Research Papers 75, 1-15. https://doi.org/10.1016/j.dsr.2013.01.003
- Yamamoto, K. and Yamauchi, K. 1974. Sexual maturation of Japanese eel and production of eel larvae in the aquarium. Nature 251, 220. https://doi.org/10.1038/251220a0
- Yoshimatsu, T. 2011. Early development of pre-leptocephalus larvae of the Japanese eel in captivity with special reference to the organs for larval feeding. Bull. Graduate School of Bioresources Mie Univ. 37, 11-18.
- Wouters, R., Vanhauwaert, A., Naessens, E., Ramos, X., Pedrazzoli, A. and Lavens, P. 1997. The effect of dietary n-3 HUFA and 22:6n-3/20:5n-3 ratio on white shrimp larvae and postlavae. Aquaculture 5, 113-126.