DOI QR코드

DOI QR Code

Fermented Organic Matter as Possible Food for Rearing Anguilla japonica Leptocephali

뱀장어(Anguilla japonica) 자어 먹이로 유기물 분해산물의 활용 가능성

  • Kim, Hyo-Won (Jeju Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Jung-Hyun (Jeju Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Myung-Hee (Department of Molecular Biology, Dong-Eui University) ;
  • Kim, Kwang-Hyun (Department of Life Science and Biotecnology, Dong-Eui University) ;
  • Park, Jin-Chul (East Costal Life Science Institute Gangneung-Wonju National University) ;
  • Park, Heum-Gi (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Han, Chang-Hee (Department of Molecular Biology, Dong-Eui University) ;
  • Kim, Dae-Jung (Jeju Fisheries Research Institute, National Institute of Fisheries Science)
  • 김효원 (국립수산과학원 제주수산연구소) ;
  • 김정현 (국립수산과학원 제주수산연구소) ;
  • 김명희 (동의대학교 분자생물학과) ;
  • 김광현 (동의대학교 생명응용학과) ;
  • 박진철 (강릉원주대학교 동해안생명과학연구소) ;
  • 박흠기 (강릉원주대학교 해양자원육성학과) ;
  • 한창희 (동의대학교 분자생물학과) ;
  • 김대중 (국립수산과학원 제주수산연구소)
  • Received : 2018.10.10
  • Accepted : 2018.12.13
  • Published : 2018.12.30

Abstract

We prepared flocculated detritus-like organic marine snow originating from various organisms by fermentation using microorganisms; this fermented organic material was fed to the leptocephali of the eel (Anguilla japonica) to investigate whether or not such organic matter was an appropriate food source for the larvae. A strain was isolated from a biofloc technology system used to culture fish, and seven types of organic material from hen's egg, eel muscle, tuna muscle, lugworm, shrimp, manila clam, mussel, and sea squirt were fermented using isolated bacteria (Bacillus sp.). The fermented matter did not show any specific form and was larger than $10-20{\mu}m$ but no more than $100{\mu}m$ in size. Four diets (A-D) were prepared using the various fermented products, and the larvae were fed the prepared food from 20 days after hatching. The leptocephali fed the A, B, and C diets survived until 37, 39, and 37 days after hatching, respectively. However, the leptocephali fed the D diet survived for 60 days after hatching. The protein content of each diet was very similar, but the n-3 HUFA concentration in the D diet was approximately twice as high as that of the others.

본 연구에서는 BFT (biofloc technology) system 수조로부터 분리된 미생물(Bacillus sp.)을 이용하여 Marine snow와 유사한 유기물 분해산물을 만들어 뱀장어 자어먹이로 활용 가능성을 조사하였다. 유기원으로는 계란, 참다랑어, 뱀장어, 담치, 갯지렁이, 멍게, 바지락 그리고 새우를 이용하여 8 종류의 유기물 분해산물(HE, TM, EM, PC, TA, MS, HA, SP)를 생산했다. 생산된 유기물 분해산물은 특정한 형태는 나타나지 않았으며, 크기도 $10-20{\mu}m$의 미세한 것부터 $100{\mu}m$ 이상 되는 것까지 다양하였다. 부화 후 20일부터 다양한 유기물 분해산물을 이용하여 제조한 4 종류의 먹이(A, B, C, D-type)를 급이한 결과 A, B, C-type의 먹이를 급이한 뱀장어 유생은 각각 부화 후 37일, 39일, 37일까지 생존하였으나, D-type의 먹이를 급히한 뱀장어 유생은 부화 후 60일 동안 생존하였다. 각 먹이의 단백질 함량은 비슷하였지만, D-type 먹이의 n-3 HUFA 농도는 다른 type의 n-3 HUFA 농도보다 약 2배 높았다.

Keywords

SMGHBM_2018_v28n12_1424_f0001.png 이미지

Fig. 1. Artificial organic decomposition products formed by fermented organic particles by microbial strain Bacillus sp.

SMGHBM_2018_v28n12_1424_f0002.png 이미지

Fig. 2. Photographs of leptocephalus larvae fed each feed type shown in Table 1. Photographs A, B, C, and D show larvae fed each type of feed (feed type A, B, C, and D) listed in Table 1. Photograph E shows larvae fed dogfish shark egg yolk-based feed received from the Nationcal Institute of Fisheries Science.

SMGHBM_2018_v28n12_1424_f0003.png 이미지

Fig. 3. Changes in survival rates of leptocephalus fed each diet (A, B, C, D-type and dogfish shark egg yolk-based diet) shown in Table 1 and from day 20 after hatching.

SMGHBM_2018_v28n12_1424_f0004.png 이미지

Fig. 4. Changes in body length of leptocephalus each diet (A, B, C, D-type and dogfish shark egg yolk-based diet) shown in Table 1 from day 20 after hatching.

Table 1. Feed formulation table for investigating the survival effect of diets on leptocephalus larvae of eel (A. japonica) from day 20 after hatching

SMGHBM_2018_v28n12_1424_t0001.png 이미지

Table 2. Amino acid content and protein concentration of each diet listed in Table 1

SMGHBM_2018_v28n12_1424_t0002.png 이미지

Table 3. Fatty acid content of each diet listed in Table 1

SMGHBM_2018_v28n12_1424_t0003.png 이미지

References

  1. Alldredge, A. L. and Youngbluth, M. J. 1985. The significance of macroscopic aggregates (marine snow) as sites for heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic. Deep Sea Research Part A. Oceanogr. Res. Pap. 32, 1545-1456.
  2. Arndt, S., Jorgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D. and Regnier, P. 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Science Rev. 123, 53-86. https://doi.org/10.1016/j.earscirev.2013.02.008
  3. Avnimelech, Y. 2006, Bio-filters: The need for an new comprehensive approach. Aquac. Eng. 34, 172-178. https://doi.org/10.1016/j.aquaeng.2005.04.001
  4. Cowen, J. P. and Holloway, C. F. 1996. Structural and chemical analysis of marine aggregates: in situ macrophotography and laser confocal and electron microscopy. Mar. Biol. 126, 163-174. https://doi.org/10.1007/BF00347441
  5. Crab, R., Chielens, B., Wille, M., Bossier, P. and Verstraete, W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac. Res. 41, 559-567. https://doi.org/10.1111/j.1365-2109.2009.02353.x
  6. Fordham, S., Fowler, S. L., Coelho, R., Goldman, K. J. and Francis, M. 2006. Squalus Acanthias. IUCN Red List of Threatened Species. Version 2010.1. Available at http://www.iucnredlist.org.
  7. Furuita, H., Takeuchi, T., Watanabe, T., Fujimoto, H., Sekiya, S. and Imaizumi, K. 1996. Requirements of larval yellowtail for eicosapentaenoic acid, docosahexaenoic acid, and n-3 highly unsaturated fatty acid. Fish. Sci. 62, 372-379. https://doi.org/10.2331/fishsci.62.372
  8. Izquierdo, M. S. 1996. Essential fatty acid requirements of cultured marine fish larvae. Aquac. Nutr. 2, 183-191. https://doi.org/10.1111/j.1365-2095.1996.tb00058.x
  9. Kagawa, H., Tanaka, H., Ohta, H., Unuma, T. and Nomura, K. 2005. The first success of glass eel production in the world: basic biology on fish reproduction advances new applied technology in aquaculture. Fish. Physiol. Biochem. 31, 193-199. https://doi.org/10.1007/s10695-006-0024-3
  10. Kim, D. J., Kim, E. H., Park, M. W., Cho, Y. C. and Lim, S. G. 2006a. Plasma sex steroid hormone profiles in artificially maturing wild eel, Anguilla japonica. J. Aquac. 19, 267-274.
  11. Kim, D. J., Lee, N. S., Kim, K. K. and Chang, D. S. 2014. Effects of starvation, water temperature, and water flow on the metamorphosis of leptocephalus of Japanese eel Anguilla japonica. Kor. J. Fish. Aquat. Sci. 47, 597-602.
  12. Kim, E. O., Bae, J. Y., Lim, S. G., Son, M. H., Park, M. W., Park, M. S., Cho, Y. C. and Kim, D. J. 2006b. Plasma Sex Steroid Hormone Profiles and Testicular Development in Artificially Maturing Cultured Mille Eel, Anguilla japonica. Kor. J. Fish. Aquac. Sci. 39, 466-471.
  13. Kim, S. K., Lee, B. I., Kim, D. J. and Lee, N. S. 2014. Development of the slurry type diet for the growing leptocephalus, eel larvae (Anguilla japonica). J. Fish. Mar. Sci. Educ. 26, 1209-1216.
  14. KiOrboe, T. 2000. Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnol. Oceanogr. 45, 479-484. https://doi.org/10.4319/lo.2000.45.2.0479
  15. Lin, H. R., Xie, G., Zhang, L. H., Wang, X. D. and Chen, L. X. 1998. Artificial induction of gonadal maturation and ovulation in the Japanese eel (Anguilla japonica, T ETS.). Bull. Fr. Peche. Piscic. 349, 163-176.
  16. Ma, J., Shao, Q., Xu, Z. and Zhou, F. 2013. Effect of Dietary n-3 highly unsaturated fatty acids on growth, body composition and fatty acid profiles of juvenile black seabream, Acanthopagrus schlegeli (Bleeker) J. World Aquac. Soc. 44, 311-325. https://doi.org/10.1111/jwas.12032
  17. Masuda, Y., Imaizumi, H., Oda, K., Hashimoto, H., Teruya, K. and Usuki, H. 2011. Japanese eel Anguilla japonica larvae can metamorphose into glass eel within 131 days after hatcing in captivity. Nippon. Suisan. Gakkaishi. 77, 416-418. (in Japanese with English abstract) https://doi.org/10.2331/suisan.77.416
  18. Masuda, Y., Jinbo, T., Imaizumi, H., Furuita, H., Matsunari, H., Murashita, K., Fujimoto, H., Nagao, J. and Kawakami, Y. 2013. A step forward in development of fish protein hydrolysate-based diets for larvae of Japanese eel Anguilla japonica. Fish. Sci. 79, 681-688. https://doi.org/10.1007/s12562-013-0637-2
  19. Masuda, Y., Yatabe, T., Matsunari, H., Furuita, H., Kamoshida, M., Shima, Y. and Kuwada, H. 2016. Rearing of larvae of Japanese eel Anguilla japonica to metamorphosis into glass eel by feeding with fish protein hydrolysate-based diets. Nippon. Suisan. Gakkaishi. 82, 131-133. (in Japanese with English abstract) https://doi.org/10.2331/suisan.15-00060
  20. Miller, M. J. 2009. Ecology of anguilliform leptocephali : remarkable transparent fish larvae of the ocean surface layer. Aqua-Bio Sci. Monogr. 2, 1-94.
  21. Miller, M. J., Otake, T. Aoyama, J. Wouthuyzen, S., Suhartt, S., Sugeha, H. Y. and Tshkamoto, K. 2011. Observation of gut contents of leptocephali in the north equatorial current and tomini bay, Indonesia. Coast. Mar. Sci. 35, 277-288.
  22. Miller, M. J., Chikaraishi, Y., Ogawa, N. O., Yamada, Y., Tsukamoto, K. and Ohkouchi, N. 2013. A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol. Lett. 9, 20120826.
  23. Mochioka, N. and Iwamizu, M. 1996. Diet of anguilloid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. Mar. Biol. 125, 447-452.
  24. Murashita, K., Furuita, H., Matsunari, H., Yamamoto, T., Awaji, M., Nomura, K., Nagao, J. and Tanaka, H. 2013. Partial characterization and ontogenetic development of pancreatic digestive enzymes in Japanese eel Anguilla japonica larvae. Fish. Physiol. Biochem. 39, 895-905. https://doi.org/10.1007/s10695-012-9749-3
  25. Lee, N. S., Kim, D. J., Lee, B. L., Kim, S. K. and Kim, K. K. 2015. Distribution of ghrelin immunoreactivity in artificially reared Japanese eel, Anguilla japonica, leptocephalus and metamorphosed glass eel. J. Environ. Biol. 36, 521.
  26. Ohta, H., Kagawa, H., Tanaka, H., Okuzawa, K., Iinuma, N. and Hirose, K. 1997. Artificial induction of maturation and fertilization in the Japanese eel, Anguilla japonica. Fish Physiol. Biochem. 17, 163-169. https://doi.org/10.1023/A:1007720600588
  27. Okamura, A., Yamada, Y., Horie, N., Mikawa, N., Tanaka, S., Kobayashi, H. and Tsukamoto, K. 2013. Hen egg yolk and skinned krill as possible foods for rearing leptocephalus larvae of Anguilla japonica Temminck & S chlegel. Aquac. Res. 44, 1531-1538. https://doi.org/10.1111/j.1365-2109.2012.03160.x
  28. Park, J. C., Kwon, O. N., Hong, S. E., An, H. C., Bae, J. H., Park, M. S. and Park, H. G. 2013. Changes in the growth and biochemical composition of Nannochloropsis sp. cultures using light-emitting diodes. Kor. J. Fish. Aquac. Sci. 46, 259-265.
  29. Pedersen, B. H., Ueberschar, B. and Kurokawa, T. 2003. Digestive response and rates of growth in pre-leptocephalus larvae of the Japanese eel Anguilla japonica reared on artificial diets. Aquaculture 215, 321-338. https://doi.org/10.1016/S0044-8486(02)00065-0
  30. Pfeiler, E. 1999. Developmental physiology of elopomorph leptocephali. Comparative Biochemistry and Physiology. Part A, Mol. Integr. Physiol. 123, 113-128. https://doi.org/10.1016/S1095-6433(99)00028-8
  31. Salhi, M., Izquierdo, M. S., Hernandez-Cruz, C. M., Gonzalez, M. and Fernandez-Palacios, H. 1994. Effect of lipid and n-3 HUFA levels in microdiets on growth, survival and fatty acid composition of larval gilthead seabream (Sparus aurata). Aquaculture 124, 275-282. https://doi.org/10.1016/0044-8486(94)90389-1
  32. Skoog, A., Alldredge, A., Passow, U., Dunne, J. and Murray, J. 2008. Neutral aldoses as source indicators for marine snow. Mar. Chem. 108, 195-206. https://doi.org/10.1016/j.marchem.2007.11.008
  33. Tanaka, H., Kagawa, H. and Ohta, H. 2001. Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture 201, 51-60. https://doi.org/10.1016/S0044-8486(01)00553-1
  34. Tanaka, H. 2003. Techniques for larval rearing. In: Eel Biology (ed. By K. Aida, K. Tsukamoto & K. Yamauchi), pp. 427-434. Springer-Verlag, Tokyo, Japan.
  35. Tanaka, H., Kagawa, H., Ohta, H., Unuma, T. and Nomura, K. 2003. The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol. Biochem. 28, 493-497. https://doi.org/10.1023/B:FISH.0000030638.56031.ed
  36. Tansel, B. 2018. Morphology, composition and aggregation mechanisms of soft bioflocs in marine snow and activated sludge: A comparative review. J. Environ. Manage. 205, 231-243. https://doi.org/10.1016/j.jenvman.2017.09.082
  37. Tecchio, S., Coll, M., Christensen, V., Ramirez-Llodra, E. and Sarda, F. 2013. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea. Deep Sea Research Part I: Oceanographic Research Papers 75, 1-15. https://doi.org/10.1016/j.dsr.2013.01.003
  38. Yamamoto, K. and Yamauchi, K. 1974. Sexual maturation of Japanese eel and production of eel larvae in the aquarium. Nature 251, 220. https://doi.org/10.1038/251220a0
  39. Yoshimatsu, T. 2011. Early development of pre-leptocephalus larvae of the Japanese eel in captivity with special reference to the organs for larval feeding. Bull. Graduate School of Bioresources Mie Univ. 37, 11-18.
  40. Wouters, R., Vanhauwaert, A., Naessens, E., Ramos, X., Pedrazzoli, A. and Lavens, P. 1997. The effect of dietary n-3 HUFA and 22:6n-3/20:5n-3 ratio on white shrimp larvae and postlavae. Aquaculture 5, 113-126.