참고문헌
- Turing, A. M., "Computing Machinery and Intelligence", Mind 49, pp.433-460, 1950.
- Hajela, P., & Berke, L., "Neurobiological computational models in structural analysis and design", Computers & Structures, Vol.41, No.4, pp.657-667, 1991 https://doi.org/10.1016/0045-7949(91)90178-O
- Biedermann, J. D., "Representing Design Knowledge with Neural Networks", Computer-Aided Civil and Infrastructure Engineering, Vol.12, No.4, pp.277-285, 1997 https://doi.org/10.1111/0885-9507.00063
- Li, S., "Global flexibility simulation and element stiffness simulation in finite element analysis with neural network", Computer Methods in Applied Mechanics and Engineering, Vol.186, No.1, pp.101-108, 2000 https://doi.org/10.1016/S0045-7825(99)00108-5
- Lee, S. H., Ha, J. W., Zokhirova, M., Moon, H. J., & Lee, J. H., "Background Information of Deep Learning for Structural Engineering", Archives of Computational Methods in Engineering, Vol.25, No.1, pp.121-129, 2018 https://doi.org/10.1007/s11831-017-9237-0
- Samuel, A. L., "Some Studies in Machine Learning Using the Game of Checkers. II -Recent Progress", IBM Journal of Research and Development, Vol.11, No.6, pp.601-617, 1967 https://doi.org/10.1147/rd.116.0601
- Lee, S. H., & Lee, J. H., "Deep Learning for Structural Analysis", Journal of Korean Association for Spatial Structures, Vol.17, No.4, pp.10-15, 2017
- Pearson, K., & Lee, A., "On The Generalized Probable Error in Multiple Normal Correlation", Biometrika, Vol.6, No.1, pp.59-68, 1908 https://doi.org/10.1093/biomet/6.1.59
- Kromanis, R., & Kripakaran, P., "Predicting thermal response of bridges using regression models derived from measurement histories", Computers & Structures, Vol.136, pp.64-77, 2014 https://doi.org/10.1016/j.compstruc.2014.01.026
- Takayuki, O., "Deep Learning", Jpub Press, pp.203, 2016.
- Jo, T. H., "Deep Learning for Everyone", Gilbut INC., pp.308, 2017.
- Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R.,... Winkler, R., "The Accuracy of Extrapolation (Time Series) Methods: Results of a Forecasting Competition", Journal of Forecasting, Vol.1, No.2, pp.111-153, 1982 https://doi.org/10.1002/for.3980010202
- Kingma, D. P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. Proceedings of the 3rd International Conference for Learning Representations, USA, pp.1-15
- Lim, H. K., Kim, J. B., Kwon, D. H., & Han, Y. H., "Comparison Analysis of TensorFlow's Optimizer Based on MNIST's CNN Model", Journal of Advanced Technology Research, Vol. 2, No.1, pp.6-14, 2017