DOI QR코드

DOI QR Code

Interpolation of GPS Receiver Clock Errors Using Least-Squares Collocation

Least-Squares Collocation을 이용한 GPS 수신기 시계오차 보간

  • Hong, Chang-Ki (Dept. of Geoinformatics Engineering, Kyungil University) ;
  • Han, Soohee (Dept. of Geoinformatics Engineering, Kyungil University)
  • Received : 2018.12.06
  • Accepted : 2018.12.24
  • Published : 2018.12.31

Abstract

More than four visible GPS (Global Positioning System) satellites are required to obtain absolute positioning. However, it is not easy to satisfy this condition when a rover is in such unfavorable condition as an urban area. As a consequence, clock-aided positioning has been used as an alternative method especially when the number of visible satellites is three providing that receive clock error information is available. In this study, LSC (Least-Squares Collocation) method is proposed to interpolate clock errors for clock-aided positioning after analyzing the characteristics of receiver clock errors. Numerical tests are performed by using GPS data collected at one of Korean CORS (Continuously Operating Reference Station) and a nearby GPS station. The receiver clock errors are obtained through the DGPS (Differential GPS) positioning technique and segmentation procedures are applied for efficient interpolation. Then, LSC is applied to predicted clock error at epoch which clock information is not available. The numerical test results are analyzed by examining the differences between the original and interpolated clock errors. The mean and standard deviation of the residuals are 0.24m and 0.49m, respectively. Therefore, it can be concluded that sufficient accuracy can be obtained by using the proposed method in this study.

GPS (Global Positioning System)를 이용하여 위치를 결정하기 위해서는 4개 이상의 가시위성이 있어야 한다. 하지만 도심지역과 같은 환경에서는 이러한 조건을 만족하기 어려운 경우도 있다. 특히, 가시위성이 3개뿐인 경우 외부로부터 위치결정에 필요한 시계오차정보를 활용하는 측위기법이 대안으로 사용되기도 한다. 본 연구에서는 먼저 수신기 시계오차특성을 분석한 후 시계오차의 보간에 적합한 방법으로 LSC (Least-Squares Collocation)을 제안하였다. 실험을 위해 국내 상시관측소와 상시관측소 근처에 설치된 수신기로부터 수신된 GPS 데이터를 이용하였다. DGPS (Differential GPS)기법을 통해 먼저 시계오차를 계산했으며 효율적인 보간을 위해 구간을 나눈 후 보간하는 방법을 적용하였다. 시계오차의 계산이 불가능한 epoch에 대해 LSC 보간법을 적용함으로써 시계오차를 계산하였다. 실험결과를 분석하기 위해 원래 데이터로부터 계산된 시계오차와 보간된 시계오차와의 차이인 잔차를 계산하였다. 계산결과 잔차의 평균은 0.24m 그리고 표준편차는 0.49m로 충분한 정확도의 확보가 가능한 것으로 판단된다.

Keywords

GCRHBD_2018_v36n6_621_f0001.png 이미지

Fig. 1. Flowchart of data processing

GCRHBD_2018_v36n6_621_f0002.png 이미지

Fig. 2. Azimuth and elevation angles of GPS satellite (T007)

GCRHBD_2018_v36n6_621_f0003.png 이미지

Fig. 3. Number of GPS satellites and DOPs (T007)

GCRHBD_2018_v36n6_621_f0004.png 이미지

Fig. 4. Estimated receiver clock errors; (a) TEGN and (b) T007

GCRHBD_2018_v36n6_621_f0005.png 이미지

Fig. 5. Absolute positioning results (T007)

GCRHBD_2018_v36n6_621_f0006.png 이미지

Fig. 6. DGPS positioning results (T007)

GCRHBD_2018_v36n6_621_f0007.png 이미지

Fig. 7. Number of satellites after data removal

GCRHBD_2018_v36n6_621_f0008.png 이미지

Fig. 8. Estimated receiver clock errors after data removal

GCRHBD_2018_v36n6_621_f0009.png 이미지

Fig. 9. Receiver clock offsets detected with discriminant criterion (T007)

GCRHBD_2018_v36n6_621_f0010.png 이미지

Fig. 10. Change rate of receiver clock errors with respect to time (TEGN)

GCRHBD_2018_v36n6_621_f0011.png 이미지

Fig. 11. Results of interpolation using LSC; (a) original clock errors (b) interpolated clock errors  

GCRHBD_2018_v36n6_621_f0012.png 이미지

Fig. 12. Differences between the original and interpolated clock errors

Table 1. Station informations used in this study

GCRHBD_2018_v36n6_621_t0001.png 이미지

Table 2. Statistical characteristics of DGPS positioning results (T007)

GCRHBD_2018_v36n6_621_t0002.png 이미지

Table 3. Data spans with number of satellites information

GCRHBD_2018_v36n6_621_t0003.png 이미지

References

  1. Ali, Q. and Montenegro, S. (2014), A Matlab implementation of differential GPS for low-cost GPS receivers, The International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 8, No. 3, pp. 343-350. https://doi.org/10.12716/1001.08.03.03
  2. Bednarz, S.G. (2004), Adaptive Modeling of GPS Receiver Clock for Integrity Monitoring During Precision Approaches, Master's thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambiridge, MA, USA, 100p.
  3. Chang, T.-H. and Wang, L.-S. (2009), A solution to the ill-conditioned GPS positioning problem in an urban environment, IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 1, pp. 135-145. https://doi.org/10.1109/TITS.2008.2011709
  4. Filho, E.A.M., Kuga, H.K., and Lopes, R.V.F. (2003), Real time estimation of GPS receiver clock offset by the Kalman filter, Proceedings of COBEM 2003, 17 th International Congress of Mechanical Engineering, November 10-14, 2003, Sao Paulo, Spain.
  5. Goad, C.C. and Yang, M.A. (1997), New approach to precision airborne GPS positioning for photogrammetry, Photogrammetric Engineering & Remote Sensing, Vol. 63, No. 9, pp. 1067-1077.
  6. Guo, F. and Zhang, X. (2013), Real-time clock jump compensation for precise point positioning, GPS Solution, Vol. 18, pp. 41-50.
  7. Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E. (2008), GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galieo, and more, Springer Wien New York, 518p.
  8. Jan, S.S., Egziabher, D.G., and Walter, T. (2008), Improving GPS-Based landing system performance using an empirical barometric altimeter confidence bound, IEEE Transactions on Aerospace and Electronic System, Vol. 44, No. 1, pp. 127-146. https://doi.org/10.1109/TAES.2008.4516994
  9. Langley, R.B. (1997), GPS receiver system noise, GPS world, Vol. 8, No. 6, pp. 40-45.
  10. Moritz, H. (2001), Advanced Physical Geodesy, Course Notes, Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio, USA.
  11. Schaffrin, B. (2002), Adjustment Computations, Lecture Notes(GS650), Dept. of Geodetic Science, The Ohio State University, Columbus, Ohio, USA.
  12. Teng, Y., Shi, Y., and Zheng, Z. (2011), The clock-Aided method for GPS receiver positioning in an urban environment, International Journal of Computer and Electrical Engineering, Vol. 3, No. 3, pp. 389-393.
  13. Zhang, Z. (1997), Impact of Rubidium Clock Aiding on GPS Augmented Vehicular Navigation, Master's thesis, Dept. of Geomatics Engineering, The University of Calgary, Calgary, Alberta, Canada. 135p.