DOI QR코드

DOI QR Code

Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and transcriptional regulation

  • Giraud, Guillaume (Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1) ;
  • Terrone, Sophie (Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1) ;
  • Bourgeois, Cyril F. (Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, CNRS UMR 5239, INSERM U1210, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1)
  • Received : 2018.09.10
  • Published : 2018.12.31

Abstract

RNA helicases DDX5 and DDX17 are multitasking proteins that regulate gene expression in different biological contexts through diverse activities. Special attention has long been paid to their function as coregulators of transcription factors, providing insight about their functional association with a number of chromatin modifiers and remodelers. However, to date, the variety of described mechanisms has made it difficult to understand precisely how these proteins work at the molecular level, and the contribution of their ATPase domain to these mechanisms remains unclear as well. In light of their association with long noncoding RNAs that are key epigenetic regulators, an emerging view is that DDX5 and DDX17 may act through modulating the activity of various ribonucleoprotein complexes that could ensure their targeting to specific chromatin loci. This review will comprehensively describe the current knowledge on these different mechanisms. We will also discuss the potential roles of DDX5 and DDX17 on the 3D chromatin organization and how these could impact gene expression at the transcriptional and post-transcriptional levels.

Keywords

References

  1. Bourgeois CF, Mortreux F, Auboeuf D (2016) The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol 17, 426-438 https://doi.org/10.1038/nrm.2016.50
  2. Hirling H, Scheffner M, Restle T, Stahl H (1989) RNA helicase activity associated with the human p68 protein. Nature 339, 562-564 https://doi.org/10.1038/339562a0
  3. Rossler OG, Straka A, Stahl H (2001) Rearrangement of structured RNA via branch migration structures catalysed by the highly related DEAD-box proteins p68 and p72. Nucleic Acids Res 29, 2088-2096 https://doi.org/10.1093/nar/29.10.2088
  4. Huang Y and Liu ZR (2002) The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. J Biol Chem 277, 12810-12815 https://doi.org/10.1074/jbc.M200182200
  5. Fuller-Pace FV (2013) The DEAD box proteins DDX5 (p68) and DDX17 (p72): multi-tasking transcriptional regulators. Biochim Biophys Acta 1829, 756-763 https://doi.org/10.1016/j.bbagrm.2013.03.004
  6. Tuteja N, Tarique M, Banu MS, Ahmad M, Tuteja R (2014) Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase. Plant Mol Biol 85, 639-651 https://doi.org/10.1007/s11103-014-0209-6
  7. Causevic M, Hislop RG, Kernohan NM et al (2001) Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene 20, 7734-7743 https://doi.org/10.1038/sj.onc.1204976
  8. Wang R, Jiao Z, Li R, Yue H, Chen L (2012) p68 RNA helicase promotes glioma cell proliferation in vitro and in vivo via direct regulation of NF-kappaB transcription factor p50. Neuro Oncol 14, 1116-1124 https://doi.org/10.1093/neuonc/nos131
  9. Clark EL, Hadjimichael C, Temperley R, Barnard A, Fuller-Pace FV, Robson CN (2013) p68/DdX5 supports beta-catenin & RNAP II during androgen receptor mediated transcription in prostate cancer. PLoS One 8, e54150 https://doi.org/10.1371/journal.pone.0054150
  10. Wang HZ, Gao X, Yang JJ, Liu ZR (2013) Interaction between p68 RNA helicase and Ca2+-calmodulin promotes cell migration and metastasis. Nature Communications 4, 1354 https://doi.org/10.1038/ncomms2345
  11. Guturi KK, Sarkar M, Bhowmik A, Das N, Ghosh MK (2014) DEAD-box protein p68 is regulated by betacatenin/transcription factor 4 to maintain a positive feedback loop in control of breast cancer progression. Breast Cancer Research 16, 496 https://doi.org/10.1186/s13058-014-0496-5
  12. Wang Z, Luo Z, Zhou L, Li X, Jiang T, Fu E (2015) DDX5 promotes proliferation and tumorigenesis of non-smallcell lung cancer cells by activating beta-catenin signaling pathway. Cancer Sci 106, 1303-1312 https://doi.org/10.1111/cas.12755
  13. Wortham NC, Ahamed E, Nicol SM et al (2009) The DEAD-box protein p72 regulates ER alpha-/oestrogendependent transcription and cell growth, and is associated with improved survival in ER alpha-positive breast cancer. Oncogene 28, 4053-4064 https://doi.org/10.1038/onc.2009.261
  14. Dutertre M, Gratadou L, Dardenne E et al (2010) Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer. Cancer Res 70, 3760-3770 https://doi.org/10.1158/0008-5472.CAN-09-3988
  15. Samaan S, Tranchevent LC, Dardenne E et al (2014) The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways. Nucleic Acids Res 42, 2197-2207 https://doi.org/10.1093/nar/gkt1216
  16. Alqahtani H, Gopal K, Gupta N et al (2016) DDX17 (P72), a Sox2 binding partner, promotes stem-like features conferred by Sox2 in a small cell population in estrogen receptor-positive breast cancer. Cell Signal 28, 42-50 https://doi.org/10.1016/j.cellsig.2015.11.004
  17. Fang X, Yoon JG, Li L et al (2011) Landscape of the SOX2 protein-protein interactome. Proteomics 11, 921-934 https://doi.org/10.1002/pmic.201000419
  18. Yang LQ, Lin C, Zhao S, Wang H, Liu ZR (2007) Phosphorylation of p68 RNA helicase plays a role in platelet-derived growth factor-induced cell proliferation by up-regulating cyclin D1 and c-Myc expression. J Biol Chem 282, 16811-16819 https://doi.org/10.1074/jbc.M610488200
  19. Yang L, Lin C, Liu ZR (2006) P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127, 139-155 https://doi.org/10.1016/j.cell.2006.08.036
  20. Warner DR, Bhattacherjee V, Yin X et al (2004) Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. Biochem Biophys Res Commun 324, 70-76 https://doi.org/10.1016/j.bbrc.2004.09.017
  21. Dardenne E, Polay Espinoza M, Fattet L et al (2014) RNA helicases DDX5 and DDX17 dynamically orchestrate transcription, miRNA, and splicing programs in cell differentiation. Cell Rep 7, 1900-1913 https://doi.org/10.1016/j.celrep.2014.05.010
  22. Caretti G, Schiltz RL, Dilworth FJ et al (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11, 547-560 https://doi.org/10.1016/j.devcel.2006.08.003
  23. Jensen ED, Niu L, Caretti G et al (2008) p68 (Ddx5) interacts with Runx2 and regulates osteoblast differentiation. J Cell Biochem 103, 1438-1451 https://doi.org/10.1002/jcb.21526
  24. Lambert MP, Terrone S, Giraud G et al (2018) The RNA helicase DDX17 controls the transcriptional activity of REST and the expression of proneural microRNAs in neuronal differentiation. Nucleic Acids Res 46, 7686-7700 https://doi.org/10.1093/nar/gky545
  25. Rossow KL and Janknecht R (2003) Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22, 151-156 https://doi.org/10.1038/sj.onc.1206067
  26. Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV (2004) The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol 5, 11 https://doi.org/10.1186/1471-2199-5-11
  27. Jacobs AM, Nicol SM, Hislop RG, Jaffray EG, Hay RT, Fuller-Pace FV (2007) SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1. Oncogene 26, 5866-5876 https://doi.org/10.1038/sj.onc.1210387
  28. Mooney SM, Grande JP, Salisbury JL, Janknecht R (2010) Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry 49, 1-10 https://doi.org/10.1021/bi901263m
  29. Kim HT, Jeong SG, Cho GW (2016) G9a inhibition promotes neuronal differentiation of human bone marrow mesenchymal stem cells through the transcriptional induction of RE-1 containing neuronal specific genes. Neurochem Int 96, 77-83 https://doi.org/10.1016/j.neuint.2016.03.002
  30. Zhang H, Xing Z, Mani SK et al (2016) RNA helicase DEAD box protein 5 regulates Polycomb repressive complex 2/Hox transcript antisense intergenic RNA function in hepatitis B virus infection and hepatocarcinogenesis. Hepatology 64, 1033-1048
  31. Jost JP, Schwarz S, Hess D et al (1999) A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein-RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Res 27, 3245-3252 https://doi.org/10.1093/nar/27.16.3245
  32. Gallais R, Demay F, Barath P et al (2007) Deoxyribonucleic acid methyl transferases 3a and 3b associate with the nuclear orphan receptor COUP-TFI during gene activation. Mol Endocrinol 21, 2085-2098 https://doi.org/10.1210/me.2006-0490
  33. Mpakali A, Kotini D and Agalioti T (2008) p68/Ddx5 RNA helicase is a key regulator of de novo DNA methyltransferases in mouse embryonic stem cells. FEBS J 275, 418 (PP8-125)
  34. Metivier R, Gallais R, Tiffoche C et al (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45-50 https://doi.org/10.1038/nature06544
  35. Jost JP, Fremont M, Siegmann M, Hofsteenge J (1997) The RNA moiety of chick embryo 5-methylcytosine- DNA glycosylase targets DNA demethylation. Nucleic Acids Res 25, 4545-4550 https://doi.org/10.1093/nar/25.22.4545
  36. Cloutier SC, Wang S, Ma WK et al (2016) Regulated Formation of lncRNA-DNA Hybrids Enables Faster Transcriptional Induction and Environmental Adaptation. Mol Cell 61, 393-404 https://doi.org/10.1016/j.molcel.2015.12.024
  37. Cloutier SC, Ma WK, Nguyen LT, Tran EJ (2012) The DEAD-box RNA helicase Dbp2 connects RNA quality control with repression of aberrant transcription. J Biol Chem 287, 26155-26166 https://doi.org/10.1074/jbc.M112.383075
  38. Cloutier SC, Wang S, Ma WK, Petell CJ, Tran EJ (2013) Long noncoding RNAs promote transcriptional poising of inducible genes. PLoS Biol 11, e1001715 https://doi.org/10.1371/journal.pbio.1001715
  39. Ma WK, Paudel BP, Xing Z, Sabath IG, Rueda D, Tran EJ (2016) Recruitment, Duplex Unwinding and Protein- Mediated Inhibition of the Dead-Box RNA Helicase Dbp2 at Actively Transcribed Chromatin. J Mol Biol 428, 1091-1106 https://doi.org/10.1016/j.jmb.2016.02.005
  40. Wang S, Xing Z, Pascuzzi PE, Tran EJ (2017) Metabolic Adaptation to Nutrients Involves Coregulation of Gene Expression by the RNA Helicase Dbp2 and the Cyc8 Corepressor in Saccharomyces cerevisiae. G3 (Bethesda) 7, 2235-2247
  41. Beck ZT, Cloutier SC, Schipma MJ, Petell CJ, Ma WK, Tran EJ (2014) Regulation of glucose-dependent gene expression by the RNA helicase Dbp2 in Saccharomyces cerevisiae. Genetics 198, 1001-1014 https://doi.org/10.1534/genetics.114.170019
  42. Xing Z, Wang S, Tran EJ (2017) Characterization of the mammalian DEAD-box protein DDX5 reveals functional conservation with S. cerevisiae ortholog Dbp2 in transcriptional control and glucose metabolism. RNA 23, 1125-1138 https://doi.org/10.1261/rna.060335.116
  43. Mazurek A, Park Y, Miething C et al (2014) Acquired dependence of acute myeloid leukemia on the DEAD-box RNA helicase DDX5. Cell Rep 7, 1887-1899 https://doi.org/10.1016/j.celrep.2014.05.019
  44. Boeke J, Bag I, Ramaiah MJ et al (2011) The RNA helicase Rm62 cooperates with SU(VAR)3-9 to re-silence active transcription in Drosophila melanogaster. PLoS One 6, e20761 https://doi.org/10.1371/journal.pone.0020761
  45. Buszczak M and Spradling AC (2006) The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes Dev 20, 977-989 https://doi.org/10.1101/gad.1396306
  46. Kalantari R, Chiang CM, Corey DR (2016) Regulation of mammalian transcription and splicing by Nuclear RNAi. Nucleic Acids Res 44, 524-537 https://doi.org/10.1093/nar/gkv1305
  47. Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16, 2497-2508 https://doi.org/10.1101/gad.1022002
  48. Hock J, Weinmann L, Ender C et al (2007) Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep 8, 1052-1060 https://doi.org/10.1038/sj.embor.7401088
  49. Mele M and Rinn JL (2016) "Cat's Cradling" the 3D Genome by the Act of LncRNA Transcription. Mol Cell 62, 657-664 https://doi.org/10.1016/j.molcel.2016.05.011
  50. Long Y, Wang X, Youmans DT, Cech TR (2017) How do lncRNAs regulate transcription? Sci Adv 3, eaao2110 https://doi.org/10.1126/sciadv.aao2110
  51. Lanz RB, McKenna NJ, Onate SA (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97, 17-27 https://doi.org/10.1016/S0092-8674(00)80711-4
  52. Hube F, Velasco G, Rollin J, Furling D, Francastel C (2011) Steroid receptor RNA activator protein binds to and counteracts SRA RNA-mediated activation of MyoD and muscle differentiation. Nucleic Acids Res 39, 513-525 https://doi.org/10.1093/nar/gkq833
  53. Jung C, Mittler G, Oswald F, Borggrefe T (2013) RNA helicase Ddx5 and the noncoding RNA SRA act as coactivators in the Notch signaling pathway. Biochim Biophys Acta Cell Res 1833, 1180-1189 https://doi.org/10.1016/j.bbamcr.2013.01.032
  54. Liu C, Wu HT, Zhu N et al (2016) Steroid receptor RNA activator: Biologic function and role in disease. Clin Chim Acta 459, 137-146 https://doi.org/10.1016/j.cca.2016.06.004
  55. Wongtrakoongate P, Riddick G, Fucharoen S, Felsenfeld G (2015) Association of the Long Non-coding RNA Steroid Receptor RNA Activator (SRA) with TrxG and PRC2 Complexes. PLoS Genet 11, e1005615 https://doi.org/10.1371/journal.pgen.1005615
  56. Polo JM, Anderssen E, Walsh RM et al (2012) A Molecular Roadmap of Reprogramming Somatic Cells into iPS Cells. Cell 151, 1617-1632 https://doi.org/10.1016/j.cell.2012.11.039
  57. Li H, Lai P, Jia J et al (2017) RNA Helicase DDX5 Inhibits Reprogramming to Pluripotency by miRNA-Based Repression of RYBP and its PRC1-Dependent and -Independent Functions. Cell Stem Cell 20, 462-477 e6 https://doi.org/10.1016/j.stem.2016.12.002
  58. Bourgeois CF and Auboeuf D (2017) The RNA helicase DDX5 is a reprogramming roadblock. Stem Cell Investig 4, 79 https://doi.org/10.21037/sci.2017.09.04
  59. Arun G, Akhade VS, Donakonda S, Rao MR (2012) mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Mol Cell Biol 32, 3140-3152 https://doi.org/10.1128/MCB.00006-12
  60. Akhade VS, Arun G, Donakonda S, Rao MR (2014) Genome wide chromatin occupancy of mrhl RNA and its role in gene regulation in mouse spermatogonial cells. RNA Biol 11, 1262-1279 https://doi.org/10.1080/15476286.2014.996070
  61. Kataruka S, Akhade VS, Kayyar B, Rao MRS (2017) Mrhl Long Noncoding RNA Mediates Meiotic Commitment of Mouse Spermatogonial Cells by Regulating Sox8 Expression. Mol Cell Biol 37
  62. Sallam T, Jones M, Thomas BJ et al (2018) Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat Med 24, 304-312 https://doi.org/10.1038/nm.4479
  63. Das M, Renganathan A, Dighe SN et al (2018) DDX5/p68 associated lncRNA LOC284454 is differentially expressed in human cancers and modulates gene expression. RNA Biol 15, 214-230 https://doi.org/10.1080/15476286.2017.1397261
  64. Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689-693 https://doi.org/10.1126/science.1192002
  65. Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51, 349-359 https://doi.org/10.1016/j.molcel.2013.07.017
  66. Dekker J and Mirny L (2016) The 3D Genome as Moderator of Chromosomal Communication. Cell 164, 1110-1121 https://doi.org/10.1016/j.cell.2016.02.007
  67. Lei EP and Corces VG (2006) RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet 38, 936-941 https://doi.org/10.1038/ng1850
  68. Moshkovich N, Nisha P, Boyle PJ, Thompson BA, Dale RK, Lei EP (2011) RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes Dev 25, 1686-1701 https://doi.org/10.1101/gad.16651211
  69. Yao H, K Brick K, Evrard Y, Xiao T, Camerini-Otero RD, Felsenfeld G (2010) Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev 24, 2543-2555 https://doi.org/10.1101/gad.1967810
  70. Merkenschlager M and Nora EP (2016) CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation. Annu Rev Genomics Hum Genet 17, 17-43 https://doi.org/10.1146/annurev-genom-083115-022339
  71. Nora EP, Goloborodko A, Valton AL et al (2017) Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. Cell 169, 930-944 e22 https://doi.org/10.1016/j.cell.2017.05.004
  72. Rao SSP, Huang SC, Glenn St Hilaire B et al (2017) Cohesin Loss Eliminates All Loop Domains. Cell 171, 305-320 e24 https://doi.org/10.1016/j.cell.2017.09.026
  73. Schwarzer W, Abdennur N, Goloborodko A et al (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51-56 https://doi.org/10.1038/nature24281
  74. Naftelberg S, Schor IE, Ast G, Kornblihtt AR (2015) Regulation of Alternative Splicing Through Coupling with Transcription and Chromatin Structure. Ann Rev Biochem 84, 165-198 https://doi.org/10.1146/annurev-biochem-060614-034242
  75. Shukla S, Kavak E, Gregory M et al (2011) CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74-79 https://doi.org/10.1038/nature10442
  76. Dardenne E, Pierredon S, Driouch K et al (2012) Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat Struct Mol Biol 19, 1139-1146 https://doi.org/10.1038/nsmb.2390
  77. Gullerova M and Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132, 983-995 https://doi.org/10.1016/j.cell.2008.02.040
  78. Paredes SH, Melgar MF, Sethupathy P (2013) Promoterproximal CCCTC-factor binding is associated with an increase in the transcriptional pausing index. Bioinformatics 29, 1485-1487 https://doi.org/10.1093/bioinformatics/bts596
  79. Laitem C, Zaborowska J, Tellier M et al (2015) CTCF regulates NELF, DSIF and P-TEFb recruitment during transcription. Transcription 6, 79-90 https://doi.org/10.1080/21541264.2015.1095269
  80. Marina RJ, Sturgill D, Bailly MA et al (2016) TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCFdependent alternative splicing. EMBO J 35, 335-355 https://doi.org/10.15252/embj.201593235
  81. Ruiz-Velasco M, Kumar M, Lai MC et al (2017) CTCFMediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals. Cell Syst 5, 628-637 e6 https://doi.org/10.1016/j.cels.2017.10.018
  82. Mercer TR, Edwards SL, Clark MB et al (2013) DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements. Nat Genet 45, 852-859 https://doi.org/10.1038/ng.2677
  83. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA (2016) Formation of Chromosomal Domains by Loop Extrusion. Cell Rep 15, 2038-2049 https://doi.org/10.1016/j.celrep.2016.04.085
  84. Haarhuis JHI, van der Weide RH, Blomen VA et al (2017) The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension. Cell 169, 693-707 e14 https://doi.org/10.1016/j.cell.2017.04.013
  85. Busslinger GA, Stocsits RR, van der Lelij P et al (2017) Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503-507 https://doi.org/10.1038/nature22063
  86. Kung JT, Kesner B, An JY et al (2015) Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol Cell 57, 361-375 https://doi.org/10.1016/j.molcel.2014.12.006
  87. Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT (2013) Jpx RNA activates Xist by evicting CTCF. Cell 153, 1537-1551 https://doi.org/10.1016/j.cell.2013.05.028
  88. Tsai PF, Dell'Orso S, Rodriguez J et al (2018) A Muscle-Specific Enhancer RNA Mediates Cohesin Recruitment and Regulates Transcription In trans. Mol Cell 71, 129-141 e8 https://doi.org/10.1016/j.molcel.2018.06.008
  89. Minajigi A, Froberg J, Wei C et al (2015) Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349, aab2276 https://doi.org/10.1126/science.aab2276
  90. Camats M, Guil S, Kokolo M, Bach-Elias M (2008) P68 RNA helicase (DDX5) alters activity of cis- and trans-acting factors of the alternative splicing of H-Ras. PLoS One 3, e2926 https://doi.org/10.1371/journal.pone.0002926
  91. Kar A, Fushimi K, Zhou X et al (2011) RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5' splice site. Mol Cell Biol 31, 1812-1821 https://doi.org/10.1128/MCB.01149-10
  92. Laurent FX, Sureau A, Klein AF et al (2012) New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Nucleic Acids Res 40, 3159-3171 https://doi.org/10.1093/nar/gkr1228
  93. Ogilvie VC, Wilson BJ, Nicol SM et al (2003) The highly related DEAD box RNA helicases p68 and p72 exist as heterodimers in cells. Nucleic Acids Res 31, 1470-1480 https://doi.org/10.1093/nar/gkg236
  94. Lin S, Tian L, Shen H et al (2013) DDX5 is a positive regulator of oncogenic NOTCH1 signaling in T cell acute lymphoblastic leukemia. Oncogene 32, 4845-4853 https://doi.org/10.1038/onc.2012.482
  95. Sarkar M, Khare V and Ghosh MK (2017) The DEAD box protein p68: a novel coactivator of Stat3 in mediating oncogenesis. Oncogene 36, 3080-3093 https://doi.org/10.1038/onc.2016.449
  96. Fujita T and Fujii H (2011) Direct identification of insulator components by insertional chromatin immunoprecipitation. PLoS One 6, e26109 https://doi.org/10.1371/journal.pone.0026109