DOI QR코드

DOI QR Code

Thermo-mechanical vibration analysis of nonlocal flexoelectric/piezoelectric beams incorporating surface effects

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Barati, Mohammad Reza (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • 투고 : 2017.09.12
  • 심사 : 2017.11.29
  • 발행 : 2018.02.25

초록

This paper is concerned with thermo-mechanical vibration behavior of flexoelectric/piezoelectric nanobeams under uniform and linear temperature distributions. Flexoelectric/piezoelectric nanobeams have higher natural frequencies compared to conventional piezoelectric ones, especially at lower thicknesses. Both nonlocal and surface effects are considered in the analysis of flexoelectric/piezoelectric nanobeams for the first time. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying a Galerkin-based solution. Comparison study is also performed to verify the present formulation with those of previous data. Numerical results are presented to investigate the influences of the flexoelectricity, nonlocal parameter, surface elasticity, temperature rise, beam thickness and various boundary conditions on the vibration frequencies of thermally affected flexoelectric/piezoelectric nanobeam.

키워드

참고문헌

  1. Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
  2. Ansari, R., Oskouie, M.F., Gholami, R. and Sadeghi, F. (2016), "Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory", Compos. Part B: Eng., 89, 316-327. https://doi.org/10.1016/j.compositesb.2015.12.029
  3. Asemi, H.R., Asemi, S.R., Farajpour, A. and Mohammadi, M. (2015), "Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads", Phys. E: Low-Dimens. Syst. Nanostruct., 68, 112-122. https://doi.org/10.1016/j.physe.2014.12.025
  4. Asemi, S.R., Farajpour, A., Asemi, H.R. and Mohammadi, M. (2014), "Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM", Phys. E: Low-Dimens. Syst. Nanostruct., 63, 169-179. https://doi.org/10.1016/j.physe.2014.05.009
  5. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  6. Ebrahimi, F. and Barati, M.R. (2016a), "Dynamic modeling of a thermos-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  7. Ebrahimi, F. and Barati, M.R. (2017a), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Braz. Soc. Mech. Sci. Eng., 39(3), 937-952. https://doi.org/10.1007/s40430-016-0551-5
  8. Ebrahimi, F. and Barati, M.R. (2017b), "Surface effects on the vibration behavior of flexoelectric nanobeams based on nonlocal elasticity theory", Eur. Phys. J. Plus, 132(1), 19. https://doi.org/10.1140/epjp/i2017-11320-5
  9. Ebrahimi, F. and Barati, M.R. (2016a), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", J. Smart Nano Mater., 1-25.
  10. Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vibr. Contr., 1077546316646239.
  11. Ebrahimi, F. and Barati, M.R. (2016c), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9
  12. Ebrahimi, F. and Barati, M.R. (2016d), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
  13. Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intell. Mater. Syst. Struct., 1045389X16672569.
  14. Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  15. Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  16. Ebrahimi, F. and Barati, M.R. (2016h), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct.
  17. Ebrahimi, F. and Barati, M.R. (2016i), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
  18. Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  19. Ebrahimi, F. and Barati, M.R. (2016k), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
  20. Ebrahimi, F. and Barati, M.R. (2016l), "Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams", J. Mech., 1-11.
  21. Ebrahimi, F. and Barati, M.R. (2017c), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
  22. Ebrahimi, F. and Dabbagh, A. (2016), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct.
  23. Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  24. Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 1-19. https://doi.org/10.1140/epjp/i2016-16001-3
  25. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  26. Eringen, A.C. (1972), "Nonlocal polar elastic continua", J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  27. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  28. Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J.N. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: A paradox resolved", J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013
  29. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Rat. Mech. Analy., 57(4), 291-323. https://doi.org/10.1007/BF00261375
  30. Hosseini, M., Jamalpoor, A. and Fath, A. (2016), "Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-Pasternak standard linear solid-type of foundation", Meccan., 1-16.
  31. Jiang, X., Huang, W. and Zhang, S. (2013), "Flexoelectric nano-generator: Materials, structures and devices", Nano Energy, 2(6), 1079-1092. https://doi.org/10.1016/j.nanoen.2013.09.001
  32. Karlicic, D., Kozic, P., Adhikari, S., Cajic, M., Murmu, T. and Lazarevic, M. (2015), "Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field", J. Mech. Sci., 96, 132-142.
  33. Ke, L.L. and Wang, Y.S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21(2), 025018. https://doi.org/10.1088/0964-1726/21/2/025018
  34. Ke, L.L., Liu, C. and Wang, Y.S. (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Phys. E: Low-Dimens. Syst. Nanostruct., 66, 93-106. https://doi.org/10.1016/j.physe.2014.10.002
  35. Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  36. Li, Y.S. and Pan, E. (2016), "Bending of a sinusoidal piezoelectric nanoplate with surface effect", Compos. Struct., 136, 45-55. https://doi.org/10.1016/j.compstruct.2015.09.047
  37. Li, Y.S., Ma, P. and Wang, W. (2016), "Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory", J. Intell. Mater. Syst. Struct., 27(9), 1139-1149. https://doi.org/10.1177/1045389X15585899
  38. Liang, X., Hu, S. and Shen, S. (2014), "Effects of surface and flexoelectricity on a piezoelectric nanobeam", Smart Mater. Struct., 23(3), 035020. https://doi.org/10.1088/0964-1726/23/3/035020
  39. Liang, X., Hu, S. and Shen, S. (2015), "Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity", Smart Mater. Struct., 24(10), 105012. https://doi.org/10.1088/0964-1726/24/10/105012
  40. Liang, X., Yang, W., Hu, S. and Shen, S. (2016), "Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads", J. Phys. D: Appl. Phys., 49(11), 115307. https://doi.org/10.1088/0022-3727/49/11/115307
  41. Liu, C., Ke, L.L., Wang, Y.S. and Yang, J. (2015), "Nonlinear vibration of nonlocal piezoelectric nanoplates", J. Struct. Stab. Dyn., 15(8), 1540013. https://doi.org/10.1142/S0219455415400131
  42. Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031
  43. Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Buckling and post-buckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings", J. Struct. Stab. Dyn., 14(3), 1350067. https://doi.org/10.1142/S0219455413500673
  44. Liu, C., Ke, L.L., Yang, J., Kitipornchai, S. and Wang, Y.S. (2016), "Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory", Mech. Adv. Mater. Struct., Just Accepted.
  45. Mercan, K., Numanoglu, H. M., Akgoz, B., Demir, C. and Civalek, O. (2017), "Higher-order continuum theories for buckling response of silicon carbide nanowires (SiCNWs) on elastic matrix", Arch. Appl. Mech., 87(11), 1797-1814. https://doi.org/10.1007/s00419-017-1288-z
  46. Ochs, S., Li, S., Adams, C. and Melz, T. (2017), "Efficient experimental validation of stochastic sensitivity analyses of smart systems", Smart Struct. Mater., 97-113).
  47. Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
  48. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755
  49. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
  50. Wang, K.F. and Wang, B.L. (2011), "Vibration of nanoscale plates with surface energy via nonlocal elasticity", Phys. E: Low-Dimens. Syst. Nanostruct., 44(2), 448-453. https://doi.org/10.1016/j.physe.2011.09.019
  51. Wang, K.F. and Wang, B.L. (2012), "The electromechanical coupling behavior of piezoelectric nanowires: Surface and small-scale effects", Europhys. Lett., 97(6), 66005. https://doi.org/10.1209/0295-5075/97/66005
  52. Wang, W., Li, P., Jin, F. and Wang, J. (2016), "Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects", Compos. Struct., 140, 758-775. https://doi.org/10.1016/j.compstruct.2016.01.035
  53. Yan, Z. and Jiang, L.Y. (2011), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnol., 22(24), 245703. https://doi.org/10.1088/0957-4484/22/24/245703
  54. Yan, Z. and Jiang, L.Y. (2012), "Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints", Proc. R. Soc. A, (p. rspa20120214), The Royal Society.
  55. Yang, W., Liang, X. and Shen, S. (2015), "Electromechanical responses of piezoelectric nanoplates with flexoelectricity", Acta Mech., 226(9), 3097-3110. https://doi.org/10.1007/s00707-015-1373-8
  56. Zang, J., Fang, B., Zhang, Y.W., Yang, T.Z. and Li, D.H. (2014), "Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory", Phys. E: Low-Dimens. Syst. Nanostruct., 63, 147-150. https://doi.org/10.1016/j.physe.2014.05.019
  57. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  58. Zhang, C., Chen, W. and Zhang, C. (2013), "Two-dimensional theory of piezoelectric plates considering surface effect", Eur. J. Mech.-A/Sol., 41, 50-57. https://doi.org/10.1016/j.euromechsol.2013.02.005
  59. Zhang, J., Wang, C. and Chen, W. (2014), "Surface and piezoelectric effects on the buckling of piezoelectric nanofilms due to mechanical loads", Meccan., 49(1), 181-189. https://doi.org/10.1007/s11012-013-9784-x
  60. Zhang, L.L., Liu, J.X., Fang, X.Q. and Nie, G.Q. (2014), "Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects", Phys. E: Low-Dimens. Syst. Nanostruct., 57, 169-174. https://doi.org/10.1016/j.physe.2013.11.007
  61. Zhang, Z. and Jiang, L. (2014), "Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity", J. Appl. Phys., 116(13), 134308. https://doi.org/10.1063/1.4897367
  62. Zhang, Z., Yan, Z. and Jiang, L. (2014), "Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate", J. Appl. Phys., 116(1), 014307. https://doi.org/10.1063/1.4886315
  63. Zhu, X. and Li, L. (2017a), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
  64. Zhu, X. and Li, L. (2017b), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030