DOI QR코드

DOI QR Code

Substructure/fluid subdomain coupling method for large vibroacoustic problems

  • Received : 2017.01.06
  • Accepted : 2018.01.04
  • Published : 2018.02.25

Abstract

Dynamic analysis of complex and large structures may be costly from a numerical point of view. For coupled vibroacoustic finite element models, the importance of reducing the size becomes obvious because the fluid degrees of freedom must be added to the structural ones. In this paper, a component mode synthesis method is proposed for large vibroacoustic interaction problems. This method couples fluid subdomains and dynamical substructuring of Craig and Bampton type. The acoustic formulation is written in terms of the velocity potential, which implies several advantages: coupled algebraic systems remain symmetric, and a potential formulation allows a direct extension of Craig and Bampton's method to acoustics. Those properties make the proposed method easy to implement in an existing finite element code because the local numerical treatment of substructures and fluid subdomains is undifferentiated. Test cases are then presented for axisymmetric geometries. Numerical results tend to prove the validity and the efficiency of the proposed method.

Keywords

References

  1. Ait Younes, T. and Hamdi, M.A. (1997), Computational Acoustics and Its Environmental Applications II, Modal Shapes Reconstruction Method for Large Domains (Structure and Acoustic), Computational Mechanics Publications, 129-137.
  2. Bendaou, O., Rojas, J.E., El Hami, A., Annaque, A. and Agouzoul, M. (2009), "Stochastique and reliability analysis of a propeller with model reduction", Eur. J. Comput. Mech., 18(2), 153-173.
  3. Bennighof, J. (1999), "Vibroacoustic frequency sweep analysis using automated multi-level substructuring", AIAA J., 1, 422-427.
  4. Bermudez, A., Hervella-Nieto, L. and Rodriguez, R. (1999), "Finite element computation of three-dimensional elastoacoustic vibrations", J. Sound Vibr., 219, 279-306. https://doi.org/10.1006/jsvi.1998.1873
  5. Corigliano, A., Dossi, M. and Mariani, S. (2013), "Domain decomposition and model order reduction methods applied to the simulation of multi-physics problems in MEMS", Comput. Struct., 122, 113-127. https://doi.org/10.1016/j.compstruc.2012.12.012
  6. Craig, R.R. (1995), "Substructure methods in vibration", J. Vibr. Acoust., 117, 207-213. https://doi.org/10.1115/1.2838665
  7. Craig, R.R. and Bampton, M.C. (1968), "Coupling of substructures for dynamic analyses", A.I.A.A. J., 6, 1313-1319.
  8. Devic, C., Sigrist, J.F., Lain, C. and Baneat, P. (2005), "Etude modale numerique et experimentale d'une helice marine", Proceedings of Septieme Colloque National en Calcul des Structures, 1, 277-282.
  9. El Hami, A. and Radi, B. (1996), "Some decomposition methods in the analysis of repetitive structures", Comput. Struct., 58(5), 973-980. https://doi.org/10.1016/0045-7949(95)00206-V
  10. El Maani, R., Makhloufi, A., Radi, B. and El Hami, A. (2017a), RBDO analysis of the aircraft wing based aerodynamic behavior, Struct. Eng. Mech., 61, 441-451. https://doi.org/10.12989/sem.2017.61.4.441
  11. El Maani, R. Radi, B. and El Hami, A. (2017b), "Vibratory reliability analysis of an aircraft's wing via fluid-structure interactions", J. Aerosp., 4(3), 40. https://doi.org/10.3390/aerospace4030040
  12. Everstine, G.C. (1981), "A symmetric potential formulation for fluid-structure interaction", J. Sound Vibr., 79, 157-160. https://doi.org/10.1016/0022-460X(81)90335-7
  13. Hamdi, M.A. and Ousset, Y. and Verchery, G. (1978), "A displacement method for the analysis of vibrations of coupled fluid-structure systems", J. Numer. Meth. Eng., 13, 139-150. https://doi.org/10.1002/nme.1620130110
  14. Kim, S., Choi, E., Lee, S. and Lim, O. (2014), "Semi-analytical numerical approach for the structural dynamic response analysis of spar floating substructure for offshore wind turbine", Struct. Eng. Mech., 52(3), 633-646. https://doi.org/10.12989/sem.2014.52.3.633
  15. MacNeal, R.H. (1971), "Domain decomposition and model order reduction methods applied to the simulation of multi-physics problems in MEMS", Comput. Struct., 1, 581-601. https://doi.org/10.1016/0045-7949(71)90031-9
  16. Morand, H. and Ohayon, R. (1979), "Substructure variational analysis of the vibration of coupled fluid-structure systems. Finite element results", J. Numer. Meth. Eng., 741-755.
  17. Olson, L.G. and Bathe, K.J. (1983), "A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems", Nucl. Eng. Des., 76, 137-151. https://doi.org/10.1016/0029-5493(83)90130-9
  18. Olson, L.G. and Bathe, K.J. (1985), "Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential", Comput. Struct., 21, 21-32. https://doi.org/10.1016/0045-7949(85)90226-3
  19. Radi, B. and Estrade, J.F. (1998), "Adaptive parallelization techniques in global weather models", Parall. Comput., 24, 1167-1175. https://doi.org/10.1016/S0167-8191(98)00051-9
  20. Radi, B., Gelin, C. and Perriot, A. (1994), "Subdomain methods in structural mechanics", J. Numer. Meth. Eng., 37, 3309-3322. https://doi.org/10.1002/nme.1620371907
  21. Rubin, S. (1975), "Improved component-mode representation for structural dynamic analysis", A.I.A.A. J., 13, 995-1006.
  22. Sandberg, G.E., Hansson, P.A. and Gustavsson, M. (2001), "Domain decomposition in acoustic and structure-acoustic analysis", Comput. Meth. Appl. Mech. Eng., 190, 2979-2988. https://doi.org/10.1016/S0045-7825(00)00377-7
  23. Sarsri, D., Azrar, L., Jebbouri, A. and El Hami, A. (2011), "Component mode synthesis and polynomial chaos expansions for stochastic frequency functions of large linear FE models", Comput. Struct., 89, 346-356. https://doi.org/10.1016/j.compstruc.2010.11.009
  24. Sigrist, J.F. (2011), Interaction Fluide-Structure, Analyse Vibratoire Par Elements Finis, Ellipse, Paris, France.
  25. Souli, M. and Sigrist, J.F. (2009), Interaction Fluide-Structure: Modelisation et Simulation Numerique, Hermes, Paris, France.
  26. Wang, X. and Bathe, K.J. (1997), "Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems", J. Numer. Meth. Eng., 40, 2001-2017. https://doi.org/10.1002/(SICI)1097-0207(19970615)40:11<2001::AID-NME152>3.0.CO;2-W
  27. Xing, J.T., Price, W.G. and Du, Q.H. (1996), "Mixed finite element substructure-subdomain methods for the dynamical analysis of coupled fluid-solid interaction problems", Philosoph. Trans. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 354, 259-295. https://doi.org/10.1098/rsta.1996.0009
  28. Zienkiewicz, O.C. and Bettess, P. (1978), "Fluid-structure dynamic interaction and wave forces. An introduction to numerical treatment", J. Numer. Meth. Eng., 13, 1-16. https://doi.org/10.1002/nme.1620130102