DOI QR코드

DOI QR Code

고체 로켓 노즐의 경계층 해석과 유한차분법을 이용한 탄소/페놀릭의 열반응 해석 연구

Analysis of Boundary Layer in Solid Rocket Nozzle and Numerical Analysis of Thermal Response of Carbon/Phenolic using Finite Difference Method

  • Seo, Sang Kyu (The 4th R&D Institute - 1st Directorate, Agency for Defense Development) ;
  • Hahm, Hee Cheol (The 4th R&D Institute - 1st Directorate, Agency for Defense Development) ;
  • Kang, Yoon Goo (The 4th R&D Institute - 1st Directorate, Agency for Defense Development)
  • 투고 : 2017.02.06
  • 심사 : 2017.08.08
  • 발행 : 2018.02.01

초록

고체 로켓 추진기관 노즐의 내열재로 사용되는 탄소/페놀릭 복합재료의 열반응 수치해석을 수행하였다. 본 논문에서 탄소/페놀릭 재료의 열반응 해석은 (1) 로켓 노즐벽에서 대류열전달계수를 구하기 위한 연소가스의 경계층 적분방정식 수치해석과 (2) 삭마두께, 숯깊이 및 온도를 계산하기 위한 탄소/페놀릭의 열반응(열분해, 삭마)을 고려한 1차원 열전도 해석으로 구성된다. 시험결과와 해석결과를 비교 분석하였으며, 목삽입재 좌우 인접 부위를 제외하고 잘 일치하는 것을 확인 할 수 있었다.

The thermal response of carbon/phenolic used in a solid rocket nozzle liner was analyzed. In this paper, the numerical analysis of the thermal response of carbon/phenolic consists of (1) the integration equation of the boundary layer to obtain the convective heat transfer coefficient of the combustion gas on the rocket nozzle wall and (2) 1-D finite difference method for heat conduction of carbon/phenolic to calculate the ablation, char, and temperature. The calculated result was compared with the result of a blast-tube-type test motor. It is found that the calculated result shows good agreement with the thermal response of the test motor, except at the vicinity of the throat insert.

키워드

참고문헌

  1. Davenas, A., Solid rocket propulsion technology, 1st ed., Pergamon Press, U.K., pp. 1-32, 1992.
  2. Bartz, D.R., "Turbulent Boundary layer and heat transfer from rapidly accelerating flow of rocket combustion gases and of heated air", Advances in Heat Transfer, Vol. 2, pp. 1-108, 1965.
  3. Ellis, R.A., "NASA Space Vehicle Design Criteria (Chemical Propulsion)-Solid Rocket Motor Nozzles," NASA SP-8115, 1975.
  4. Shames, I.H., Mechanics of fluids, 4th ed., McGraw-Hill, N.Y., U.S.A., Ch. 10, 2003.
  5. Levy, D., "Introduction to numerical analysis," Department of Mathematics and Center for Scientific Computation and Mathematical Modeling, University of Maryland, Baltimore, M.D., U.S.A., 2010.
  6. Schlichting, H., Boundary-Layer Theory, 7th ed., McGraw Hill Inc., New York, N.Y., U.S.A., pp. 454, 1979.
  7. Morkovin, M.V., Effects of Compressibility on Turbulent Flows, A. Favre ed., Gordon and Breach Inc., New York, N.Y., U.S.A., pp. 367- 380, 1964.
  8. Bae, J.Y., Lee, Y.J., Bae, H.M., Ham, H.C. and Cho, H.H., "Conjugate simulation of rocket nozzle with 1-D algebraic thermal decomposition equation," 2015 KSPE Fall Conference, Jeju, Korea, pp. 145-148, Nov. 2015.
  9. Kumar, R.R., Vinod, G., Renjith, S., Rajeev, G., Jana, M.K. and Harikrishnan, R., "Thermostructural analysis of composite structures," Materials Science and Engineering: A, Vol. 412, No. 1, pp. 66-70, 2005. https://doi.org/10.1016/j.msea.2005.08.065
  10. Lapp, P. and Quesada, B., "Analysis of solid rocket motor nozzle," 28th Joint Propulsion Conference and Exhibit, Nashville, T.N., U.S.A, AIAA 92-3616, Jul. 1992.
  11. Boyarintsev, V.I. and Zvyagin, Yu. V., "Turbulent Boundary Layer on Reacting Graphite Surface," 5th Int. Heat Transfer Conference, Tokyo, Japan, pp. 264-268, Sep. 1974.
  12. Hwang, K.Y. and Kang, Y.G., "Two-dimensional Thermal Analysis for Carbonacious Thermal Liner of Rocket Nozzle with Ablation and In-depth Pyrolysis," Journal of the Korean Society of Propulsion Engineers, Vol. 3, No. 2, pp. 37-47, 1999.
  13. Kim, Y.C., "Thermal Decomposition and Ablation Analysis of Solid Rocket Propulsion," Journal of the Korean Society of Propulsion Engineers, Vol. 14, No. 5, pp. 32-44, 2010.
  14. McBride, B.J. and Gordon, S., "Computer Program for Calculation of Complex Chemical Equilibrium Composition and Applications, II. Users Manual and Program Description," NASA RP-1311, 1996.
  15. Hwang, K.Y., Yim, Y.J., Ham, H.C., Kang, Y.G. and Bae, J.C., "Effects of Solid Propellant Gases on the Thermal Response of Nozzle Liner," Journal of the Korean Society of Propulsion Engineers, Vol. 11, No. 2, pp. 26-36, 2007.