DOI QR코드

DOI QR Code

열전소자를 이용한 모터사이클용 엔진 배기 폐열 회수 시스템 성능 해석

Performance Simulation of Motorcycle Engine Exhaust Heat Recovery System using Thermoelectric Element

  • 이무연 (동아대학교 기계공학과) ;
  • 김기현 (신라대학교 융합기계공학부)
  • Lee, Moo-Yeon (Department of Mechanical Engineering, Dong-A University) ;
  • Kim, Kihyun (Division of Mechanical Convergence Engineering, Silla University)
  • 투고 : 2018.01.08
  • 심사 : 2018.02.02
  • 발행 : 2018.02.28

초록

엔진에서 배기폐열을 회수하여 엔진의 열효율을 향상시키고자 하는 연구가 활발히 이루어지고 있다. 본 연구에서는 모터사이클용 엔진의 배기 폐열 회수용 열전발전 시스템의 성능 해석을 수행하였다. Gamma Tech.의 GT-SUITE 소프트웨어를 사용하여 엔진모사 모델과 열전발전 시스템 모델을 구성하였다. 첫째, 엔진 속도 1000~7000 rpm, 엔진 부하 0~100% 조건에서 엔진의 출력, 연비 등 성능 특성과 배기가스량, 배기가스 온도 등 배기가스 특성을 파악하였다. 연료의 화학에너지 대비 배기가스로 배출되는 에너지의 비율은 엔진 속도 및 부하에 따라 40~60% 수준으로 확인되었다. 둘째, 배기폐열회수용 열전발전 시스템 모델을 구성하였다. 엔진 모델과 열전발전 시스템 모델을 통합 해석하여, 열전소자에서 발생하는 전압, 전류, 회수 전력 특성 등을 분석하였다. 열전소자의 발전 특성은 시스템을 통과하는 배기가스의 온도 분포에 지배적인 영향을 받았다. 현재 구성된 배기폐열회수용 열전발전 시스템의 열전발전량은 배기폐열 에너지 중 최대 2.2% 수준을 회수할 수 있음을 확인하였다. 향후 연구에서는 열전발전 시스템의 설계에 따른 열전발전량 특성을 파악하고, 열전발전 시스템 설계 최적화를 수행할 예정이다.

Research into exhaust heat recovery has been actively carried out to improve the thermal efficiency of internal combustion engines. In this study, the performance of thermoelectric generation from exhaust heat recovery for motorcycle engines was analyzed by 1-D thermo-fluid simulation. GT-SUITE, which was developed by Gamma Tech., was used for the simulation of the internal combustion engine and thermoelectric generation system. The basic performance of the engine was analyzed in the range of engine speed of 1000~7000 rpm and engine load of 0~100%. The ratio of exhaust heat energy to fuel chemical energy was found to be about 40~60%. A combined simulation of the engine model and thermoelectric generation model was carried out to analyze the voltage, current and power generated by the thermoelectric material. The generation characteristics of the thermoelectric material was dominantly affected by the exhaust gas temperature. The maximum generated power of the current thermoelectric generation system was found to be about 2.2% of the total exhaust heat energy. The design optimization of the thermoelectric generation system will be carried out to maximize its power generation and economic feasibility.

키워드

참고문헌

  1. M. Hamid Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M. Haji Hassan, M. B. Ali Bashir, M. Mohamad, A review on thermoelectric renewable energy: Principle parameters that affect their performance, Renew. Sustain. Energy Rev. 30, pp. 337-355, 2014. DOI: https://doi.org/10.1016/j.rser.2013.10.027
  2. R. He, S. Gahlawat, C. Guo, S. Chen, T. Dahal, H. Zhang, W. Liu, Q. Zhang, E. Chere, K. White, Z. Ren, Studies on mechanical properties of thermoelectric materials by nanoindentation, Physica Status Solidi (a), 212, pp. 2191-2195, 2015. DOI: https://doi.org/10.1002/pssa.201532045
  3. Y.-H. Cheng, W.-K. Lin, Geometric optimization of thermoelectric coolers in a confined volume using genetic algorithms, Appl. Therm. Eng. 25, pp. 2983-2997, 2005. DOI: https://doi.org/10.1016/j.applthermaleng.2005.03.007
  4. H.-C. Chien, E.-T. Chu, H.-L. Hsieh, J.-Y. Huang, S.-T. Wu, M.-J. Dai, C.-K. Liu, D.-J. Yao, Evaluation of temperature-dependent effective material properties and performance of a thermoelectric module, J. Electron. Mater. 42, pp. 2362-2370, 2013. DOI: https://doi.org/10.1007/s11664-012-2456-0
  5. J.-H. Meng, X.-D. Wang, W.-H. Chen, Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery, Energy Convers. Manage. 120, pp. 71-80, 2016. DOI: https://doi.org/10.1016/j.enconman.2016.04.080
  6. Y.Y. Hsiao, W.C. Chang, S.L. Chen, A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine, Energy 35, pp. 1447-1454, 2010. DOI: https://doi.org/10.1016/j.energy.2009.11.030
  7. S.B. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications, Appl. Therm. Eng. 23, pp. 913-935, 2003. DOI: https://doi.org/10.1016/S1359-4311(03)00012-7
  8. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science 321, pp. 1457-1461, 2008. DOI: https://doi.org/10.1126/science.1158899
  9. T.Y Kim, J.H. Kim, Assessment of the energy recovery potential of a thermoelectric generator system for passenger vehicles under various drive cycles, Energy, vol. 143, pp. 363-371, 2018. DOI: https://doi.org/10.1016/j.energy.2017.10.137