참고문헌
- Nayak AS, Veeranagouda Y, Lee K, Karegoudar TB. 2009. Metabolism of acenaphthylene via 1,2-dihydroxynaphthalene and catechol by Stenotrophomonas sp. RMSK. Biodegradation 20: 837-843. https://doi.org/10.1007/s10532-009-9271-1
- Park W, Jeon CO, Cadillo H, DeRito C, Madsen EL. 2004. Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites. Appl. Microbiol. Biotechnol. 64: 429-435. https://doi.org/10.1007/s00253-003-1420-6
- Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, et al. 2008. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32: 927-955.
- Volkering F, Breure AM, Sterkenburg A, van Andel JG. 1992. Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl. Microbiol. Biotechnol. 36: 548-552.
- Cerniglia CE. 1984. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30: 31-71.
- Heitkamp MA, Cerniglia CE. 1988. Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54: 1612-1614.
- Kang YS, Kim YJ, Jeon CO, Park W. 2006. Characterization of naphthalene-degrading Pseudomonas species isolated from pollutant-contaminated sites: oxidative stress during their growth on naphthalene. J. Microbiol. Biotechnol. 16: 1819-1825.
- Seo H, Kim J, Jung J, Jin HM, Jeon CO, Park W. 2012. Complexity of cell-cell interactions between Pseudomonas sp. AS1 and Acinetobacter oleivorans DR1: metabolic commensalism, biofilm formation and quorum quenching. Res. Microbiol. 163: 173-181. https://doi.org/10.1016/j.resmic.2011.12.003
- Dennis JJ, Zylstra GJ. 2004. Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J. Mol. Biol. 341: 753-768.
- Kang YS, Lee Y, Jung H, Jeon CO, Madsen EL, Park W. 2007. Overexpressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1. Microbiology 153: 3246-3254. https://doi.org/10.1099/mic.0.2007/008896-0
- Park W, Padmanabhan P, Padmanabhan S, Zylstra GJ, Madsen EL. 2002. nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA. Microbiology 148: 2319-2329. https://doi.org/10.1099/00221287-148-8-2319
- Simon MJ, Osslund TD, S aunders R, E nsley BD, Suggs S , Harcourt A, et al. 1993. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida s trai ns G7 and NCIB 9816-4. Gene 127: 31-37. https://doi.org/10.1016/0378-1119(93)90613-8
- Yen KM, Serdar CM. 1988. Genetics of naphthalene catabolism in pseudomonads. Crit. Rev. Microbiol. 15: 247-268. https://doi.org/10.3109/10408418809104459
- Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44: D279-D285. https://doi.org/10.1093/nar/gkv1344
- Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36. https://doi.org/10.1093/nar/28.1.33
- Galperin MY, Makarova KS, Wolf YI, Koonin EV. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43: D261-D269. https://doi.org/10.1093/nar/gku1223
- Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: D457-D462. https://doi.org/10.1093/nar/gkv1070
- Barrangou R, Fremaux C, Deveau H, Ri chards M, Boyaval P, Moineau S, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712.
- Kim J, Park C, Imlay JA, Park W. 2017. Lineage-specific SoxR-mediated regulation of an endoribonuclease protects non-enteric bacteria from redox-active compounds. J. Biol. Chem. 292: 121-133. https://doi.org/10.1074/jbc.M116.757500
- Andersen SM, Johnsen K, Sorensen J, Nielsen P, Jacobsen CS. 2000. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. Int. J. Syst. Evol. Microbiol. 50: 1957-1964. https://doi.org/10.1099/00207713-50-6-1957
- Ruiz ON, Brown LM, Striebich RC, Mueller SS, Gunasekera TS. 2015. Draft genome sequence of Pseudomonas frederiksbergensis SI8, a psychrotrophic aromatic-degrading bacterium. Genome Announc. 3: e00811-e00815.
- Davison J. 1999. Genetic exchange between bacteria in the environment. Plasmid 42: 73-91. https://doi.org/10.1006/plas.1999.1421
- Lawrence JG. 1997. Selfish operons and speciation by gene transfer. Trends Microbiol. 5: 355-359. https://doi.org/10.1016/S0966-842X(97)01110-4
- Molbak L, Licht TR, Kvist T, Kroer N, Andersen SR. 2003. Plasmid transfer from Pseudomonas putida to the indigenous bacteria on alfalfa sprouts: characterization, direct quantification, and in situ location of transconjugant cells. Appl. Environ. Microbiol. 69: 5536-5542. https://doi.org/10.1128/AEM.69.9.5536-5542.2003
피인용 문헌
- Stable-Isotope Probing-Enabled Cultivation of the Indigenous Bacterium Ralstonia sp. Strain M1, Capable of Degrading Phenanthrene and Biphenyl in Industrial Wastewater vol.85, pp.14, 2018, https://doi.org/10.1128/aem.00511-19
- Variability in Assembly of Degradation Operons for Naphthalene and its derivative, Carbaryl, Suggests Mobilization through Horizontal Gene Transfer vol.10, pp.8, 2018, https://doi.org/10.3390/genes10080569