DOI QR코드

DOI QR Code

Bioconversion of Tetracycline Antibiotics to Novel Glucoside Derivatives by Single-Vessel Multienzymatic Glycosylation

  • Pandey, Ramesh Prasad (Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University) ;
  • Chu, Luan Luong (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Kim, Tae-Su (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Sohng, Jae Kyung (Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University)
  • Received : 2017.10.12
  • Accepted : 2017.11.27
  • Published : 2018.02.28

Abstract

The single-vessel multienzyme UDP-${\alpha}$-$\text\tiny{D}$-glucose recycling system was coupled with a forward glucosylation reaction to produce novel glucose moiety-conjugated derivatives of different tetracycline antibiotic analogs. Among five tetracycline analogs used for the reaction, four molecules (chlorotetracycline, doxytetracycline, meclotetracycline, and minotetracycline) were accepted by a glycosyltransferase enzyme, YjiC, from Bacillus licheniformis to produce glucoside derivatives. However, the enzyme was unable to conjugate sugar units to rolitetracycline. All glucosides of tetracycline derivatives were characterized by ultraviolet absorbance maxima, ultra-pressure liquid chromatography coupled with photodiode array, and high-resolution quadruple time-of-flight electrospray mass spectrometry analyses. These synthesized glucosides are novel tetracycline derivatives.

Keywords

References

  1. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65: 232-260.
  2. Darken MA, Berenson H, Shirk RJ, Sjolander NO. 1960. Production of tetracycline by Streptomyces aureofaciens in synthetic media. Appl. Microbiol. 8: 46-51.
  3. Testa RT, Petersen PJ, Jacobus NL, Sum PE, Lee VJ, Tally FP. 1993. In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Antimicrob. Agents Chemother. 37: 2270-2277. https://doi.org/10.1128/AAC.37.11.2270
  4. Nelson ML, Ismail MY, McIntyre L, Bhatia B, Viski P, Hawkins P, et al. 2003. Versatile and facile synthesis of diverse semisynthetic tetracycline derivatives via Pd-catalyzed reactions. J. Org. Chem. 68: 5838-5851.
  5. Liu F, Myres AG. 2016. Development of a platform for the discovery and practical synthesis of new tetracycline antibiotics. Curr. Opin. Chem. Biol. 32: 48-57. https://doi.org/10.1016/j.cbpa.2016.03.011
  6. Karami N, Nowrouzian F, Adlerberth I, Wold AE. 2006. Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrob. Agents Chemother. 50: 156-161. https://doi.org/10.1128/AAC.50.1.156-161.2006
  7. Li W, Atkinson GC, Thakor NS, Allas U, Lu CC, Chan KY, et al. 2013. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun. 4: 1477. https://doi.org/10.1038/ncomms2470
  8. Pandey RP, Parajuli P, Koffas MA, Sohng JK. 2016. Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 34: 634-662. https://doi.org/10.1016/j.biotechadv.2016.02.012
  9. Zhang J, Ponomareva LV, Marchillo K, Zhou M, Andes DR, Thorson JS. 2013. Synthesis and antibacterial activity of doxycycline neoglycosides. J. Nat. Prod. 76: 1627-1636. https://doi.org/10.1021/np4003096
  10. Kim SJ, Cegelski L, Stueber D, Singh M, Dietrich E, Tanaka KS, et al. 2008. Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus. J. Mol. Biol. 377: 281-293.
  11. Patti GJ, Kim SJ, Yu TY, Dietrich E, Tanaka KS, Parr TR Jr, et al. 2009. Vancomycin and oritavancin have different modes of action in Enterococcus faecium. J. Mol. Biol. 392: 1178-1191. https://doi.org/10.1016/j.jmb.2009.06.064
  12. Brade KD, Rybak JM, Rybak MJ. 2016. Oritavancin: a new lipoglycopeptide antibiotic in the treatment of gram-positive infections. Infect. Dis. Ther. 5: 1-15. https://doi.org/10.1007/s40121-016-0103-4
  13. Marcone GL, Marinelli F. 2014. Glycopeptides: an old but up-to-date successful antibiotic class, pp. 85-107. In Marinelli F, Genilloud O (eds.). Antimicrobials. Springer-Verlag, Berlin-Heidelberg, Germany.
  14. Lairson LL, Henrissat B, Davies GJ, Withers SG. 2008. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77: 521-555. https://doi.org/10.1146/annurev.biochem.76.061005.092322
  15. Liang DM, L iu JH, Wu H, Wang BB, Zhu HJ, Qiao JJ. 2015. Glycosyltransferases: mechanisms and applications in natural product development. Chem. Soc. Rev. 44: 8350-8374.
  16. Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. 2015. A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. 44: 7591-7697.
  17. Devasthale PV, Mitscher LA, Telikepalli H, Vander Velde D, Zou JY, Ax HA, et al. 1992. Dactylocyclines, novel tetracycline derivatives produced by a Dactylosporangium sp. III. Absolute stereochemistry of the dactylocyclines. J. Antibiot. (Tokyo) 45: 1907-1913. https://doi.org/10.7164/antibiotics.45.1907
  18. Tymiak AA, Ax HA, Bolgar MS, Kahle AD, Porubcan MA, Andersen NH. 1992. Dactylocyclines, novel tetracycline derivatives produced by a Dactylosporangium sp. II. Structure elucidation. J. Antibiot. (Tokyo) 45: 1899-1906. https://doi.org/10.7164/antibiotics.45.1899
  19. Wells JS, O'Sullivan J, Aklonis C, Ax HA, Tymiak AA, Kirsch DR, et al. 1992. Dactylocyclines, novel tetracycline derivatives produced by a Dactylosporangium sp. I. Taxonomy, production, isolation and biological activity. J. Antibiot. (Tokyo) 45: 1892-1898. https://doi.org/10.7164/antibiotics.45.1892
  20. Horiguchi T, Hayashi K, Tsubotani S, Iinuma S, Harada S, Tanida S. 1994. New naphthacenecarboxamide antibiotics, TAN-1518 A and B, have inhibitory activity against mammalian DNA topoisomerase I. J. Antibiot. (Tokyo) 47: 545-556. https://doi.org/10.7164/antibiotics.47.545
  21. Pickens LB, Kim W, Wang P, Zhou H, Watanabe K, Gomi S, Tang YJ. 2009. Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575. J. Am. Chem. Soc. 131: 17677-17689. https://doi.org/10.1021/ja907852c
  22. Chu LL, Pandey RP, Shin JY, Jung HJ, Sohng JK. 2016. Synthetic analog of anticancer drug daunorubicin from daunorubicinone using one-pot enzymatic UDP-recycling glycosylation. J. Mol. Catal. B Enzym. 124: 1-10.
  23. Pandey RP, Gurung RB, Parajuli P, Koirala N, Tuoi LT, Sohng JK. 2014. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr. Res. 393: 26-31. https://doi.org/10.1016/j.carres.2014.03.011
  24. Pandey RP, Li TF, Kim EH, Yamaguchi T, Park YI, Kim JS, et al. 2013. Enzymatic synthesis of novel phloretin glucosides. Appl. Environ. Microbiol. 79: 3516-3521. https://doi.org/10.1128/AEM.00409-13
  25. Parajuli P, Pandey RP, Koirala N, Yoon YJ, Kim BG, Sohng JK. 2014. Enzymatic synthesis of epothilone A glycosides. AMB Express 4: 31. https://doi.org/10.1186/s13568-014-0031-1
  26. Parajuli P, Pandey RP, Pokhrel AR, Ghimire GP, Sohng JK. 2014. Enzymatic glycosylation of the topical antibiotic mupirocin. Glycoconj. J. 31: 563-572. https://doi.org/10.1007/s10719-014-9538-6
  27. Pandey RP, Parajuli P, Shin JY, Lee J, Lee S, Hong YS, et al. 2014. Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives. Appl. Environ. Microbiol. 80: 7235-7243. https://doi.org/10.1128/AEM.02076-14

Cited by

  1. Biocatalytic Synthesis of Non-Natural Monoterpene O-Glycosides Exhibiting Superior Antibacterial and Antinematodal Properties vol.4, pp.5, 2018, https://doi.org/10.1021/acsomega.9b00535
  2. Two Trifunctional Leloir Glycosyltransferases as Biocatalysts for Natural Products Glycodiversification vol.21, pp.19, 2018, https://doi.org/10.1021/acs.orglett.9b03040