DOI QR코드

DOI QR Code

Fermented Soymilk Alleviates Lipid Accumulation by Inhibition of SREBP-1 and Activation of NRF-2 in the Hepatocellular Steatosis Model

  • Ahn, Sang Bong (Department of Internal Medicine, Eulji University School of Medicine) ;
  • Wu, Wen Hao (Eulji Medi-Bio Research Institute (EMBRI), Eulji University) ;
  • Lee, Jong Hun (Eulji Medi-Bio Research Institute (EMBRI), Eulji University) ;
  • Jun, Dae Won (Department of Internal Medicine, Hanyang University College of Medicine) ;
  • Kim, Jihyun (Department of Senior Healthcare, BK21 Plus Program, Graduate School of Eulji University) ;
  • Kim, Riji (Department of Senior Healthcare, BK21 Plus Program, Graduate School of Eulji University) ;
  • Lee, Tae-bok (Department of Senior Healthcare, BK21 Plus Program, Graduate School of Eulji University) ;
  • Jun, Jin Hyun (Eulji Medi-Bio Research Institute (EMBRI), Eulji University)
  • 투고 : 2017.07.25
  • 심사 : 2017.11.20
  • 발행 : 2018.02.28

초록

Ingredients of soy and fermented soy products have been widely utilized as food supplements for health-enhancing properties. The aim of this study was to evaluate the effects of fermented soymilk (FSM) and soymilk (SM) on free fatty acid-induced lipogenesis in the hepatocellular steatosis model. HepG2 cells were incubated with palmitic acid (PA) for 24 h to induce lipogenesis and accumulation of intracellular lipid contents. The PA-treated cells were co-incubated with FSM, SM, genistein, and estrogen, respectively. Lipid accumulation in the PA-treated HpG2 cells was significantly decreased by co-incubation with FSM. Treatment of HepG2 cells with PA combined with genistein or estrogen significantly increased the expression of SREBP-1. However, FSM co-incubation significantly attenuated SREBP-1 expression in the PA-treated HepG2 cells; in addition, expression of NRF-2 and phosphorylation of ERK were significantly increased in the PA and FSM co-incubated cells. PA-induced ROS production was significantly reduced by FSM and SM. Our results suggested that the bioactive components of FSM could protect hepatocytes against the lipid accumulation and ROS production induced by free fatty acids. These effects may be mediated by the inhibition of SREBP-1 and the activation of NRF-2 via the ERK pathway in HepG2 cells.

키워드

참고문헌

  1. Shaker M, Tabbaa A, Albeldawi M, Alkhouri N. 2014. Liver transplantation for nonalcoholic fatty liver disease: new challenges and new opportunities. World J. Gastroenterol. 20: 5320-5330. https://doi.org/10.3748/wjg.v20.i18.5320
  2. Rinella ME. 2015. Nonalcoholic fatty liver disease: a systematic review. JAMA 313: 2263-2273. https://doi.org/10.1001/jama.2015.5370
  3. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. 2004. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40: 1387-1395. https://doi.org/10.1002/hep.20466
  4. Lavine JE, Schwimmer JB. 2004. Nonalcoholic fatty liver disease in the pediatric population. Clin. Liver Dis. 8: 549-558, viii-ix.
  5. Reddy JK, Rao MS. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G852-G858.
  6. Farrell GC, Larter CZ. 2006. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43: S99-S112. https://doi.org/10.1002/hep.20973
  7. Durazzo M, Belci P, Collo A, Grisoglio E, Bo S. 2012. Focus on therapeutic strategies of nonalcoholic fatty liver disease. Int. J. Hepatol. 2012: 464706.
  8. Leamy AK, Egnatchik RA, Young JD. 2013. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog. Lipid Res. 52: 165-174. https://doi.org/10.1016/j.plipres.2012.10.004
  9. Malhi H, Barreyro FJ, Isomoto H, Bronk SF, Gores GJ. 2007. Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. Gut 56: 1124-1131. https://doi.org/10.1136/gut.2006.118059
  10. Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, et al. 2003. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125: 437-443. https://doi.org/10.1016/S0016-5085(03)00907-7
  11. Kim NH, Moon PD, Kim SJ, Choi IY, An HJ, Myung NY, et al. 2008. Lipid profile lowering effect of Soypro fermented with lactic acid bacteria isolated from kimchi in high-fat dietinduced obese rats. Biofactors 33: 49-60. https://doi.org/10.1002/biof.5520330105
  12. Kaizu H, Sasaki M, Nakajima H, Suzuki Y. 1993. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76: 2493-2499.
  13. Perdigon G, Naderde Macias ME, Alvarez S, Oliver G, Pesce de Ruiz Holgado AA. 1990. Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. J. Dairy Res. 57: 255-264. https://doi.org/10.1017/S002202990002687X
  14. Shahani KM, Ayebo AD. 1980. Role of dietary lactobacilli in gastrointestinal microecology. Am. J. Clin. Nutr. 33: 2448-2457. https://doi.org/10.1093/ajcn/33.11.2448
  15. Choi YM, Bae SH, Kang DH, Suh HJ. 2006. Hypolipidemic effect of lactobacillus ferment as a functional food supplement. Phytother. Res. 20: 1056-1060. https://doi.org/10.1002/ptr.1994
  16. Shida K, Makino K, Morishita A, Takamizawa K, Hachimura S, Ametani A, et al. 1998. Lactobacillus casei inhibits antigeninduced IgE secretion through regulation of cytokine production in murine splenocyte cultures. Int. Arch. Allergy Immunol. 115: 278-287. https://doi.org/10.1159/000069458
  17. Park DJ, Oh S, Ku KH, Mok C, Kim SH, Imm JY. 2005. Characteristics of yogurt-like products prepared from the combination of skim milk and soymilk containing saccharifiedrice solution. Int. J. Food Sci. Nutr. 56: 23-34. https://doi.org/10.1080/09637480500082181
  18. Kang MS, Rhee YH. 1996. Physico-chemical characteristics and ${\beta}$-galactosidase activity of Lactobacillus plantarum from kimchi. J. Korean Soc. Appl. Biol. Chem. 39: 54-59.
  19. Lin FM, Chiu CH, Pan TM. 2004. Fermentation of a milksoymilk and Lycium chinense Miller mixture using a new isolate of Lactobacillus paracasei subsp. paracasei NTU101 and Bifidobacterium longum. J. Ind. Microbiol. Biotechnol. 31: 559-564.
  20. Liu JR, Wang SY, Chen MJ, Chen HL, Yueh PY, Lin CW. 2006. Hypocholesterolaemic effects of milk-kefir and soyamilkkefir in cholesterol-fed hamsters. Br. J. Nutr. 95: 939-946. https://doi.org/10.1079/BJN20061752
  21. Chen K, Li S, Chen F, Li J, Luo X. 2016. Regulation of the Lactobacillus strains on HMGCoA reductase gene transcription in human HepG2 cells via nuclear factor-${\kappa}B$. J. Microbiol. Biotechnol. 26: 402-407. https://doi.org/10.4014/jmb.1507.07086
  22. Kersten S. 2001. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2: 282-286. https://doi.org/10.1093/embo-reports/kve071
  23. Kim AH, K im H J, Ryu R , Han HJ, Han YJ, Choi M S, et al. 2016. A mixture of ethanol extracts of persimmon leaf and Citrus junos Sieb improves blood coagulation parameters and ameliorates lipid metabolism disturbances caused by diet-induced obesity in C57BL/6J mice. J. Microbiol. Biotechnol. 26: 295-308. https://doi.org/10.4014/jmb.1509.09050
  24. Kang S, Lee JS, Lee HC, Petriello MC, Kim BY, Do JT, et al. 2016. Phytoncide extracted from pinecone decreases LPSinduced inflammatory responses in bovine mammary epithelial cells. J. Microbiol. Biotechnol. 26: 579-587. https://doi.org/10.4014/jmb.1510.10070
  25. Donohue TM Jr. 2007. Alcohol-induced steatosis in liver cells. World J. Gastroenterol. 13: 4974-4978. https://doi.org/10.3748/wjg.v13.i37.4974
  26. Kim JH, Chen C, Kong ANT. 2011. Resveratrol inhibits genistein-induced multi-drug resistance protein 2 (MRP2) expression in HepG2 cells. Arch. Biochem. Biophys. 512: 160-166. https://doi.org/10.1016/j.abb.2011.06.004
  27. Kelly LA, Seidlova-Wuttke D, Wuttke W, O’Leary JJ, Norris LA. 2014. Estrogen receptor alpha augments changes in hemostatic gene expression in HepG2 cells treated with estradiol and phytoestrogens. Phytomedicine 21: 155-158. https://doi.org/10.1016/j.phymed.2013.07.012
  28. Smutny T, Bitman M, Urban M, Dubecka M, Vrzal R, Dvorak Z, et al. 2014. U0126, a mitogen-activated protein kinase kinase 1 and 2 (MEK1 and 2) inhibitor, selectively up-regulates main isoforms of CYP3A subfamily via a pregnane X receptor (PXR) in HepG2 cells. Arch. Toxicol. 88: 2243-2259.
  29. Tezuka H, Imai S. 2015. Immunomodulatory effects of soybeans and processed soy food compounds. Recent Pat. Food Nutr. Agric. 7: 92-99. https://doi.org/10.2174/2212798407666150629123957
  30. Imai S. 2015. Functional properties of soybean and processed soy foods ingredients. Recent Pat. Food Nutr. Agric. 7: 74. https://doi.org/10.2174/221279840702150928101409
  31. Zhang EJ, Ng KM, Luo KQ. 2007. Extraction and purification of isoflavones from soybeans and characterization of their estrogenic activities. J. Agric. Food Chem. 55: 6940-6950.
  32. Sakai T, Kogiso M. 2008. Soy isoflavones and immunity. J. Med. Invest. 55: 167-173. https://doi.org/10.2152/jmi.55.167
  33. Mohamed SS, Nallasamy P, Muniyandi P, Periyasami V, Carani VA. 2009. Genistein improves liver function and attenuates non-alcoholic fatty liver disease in a rat model of insulin resistance. J. Diabetes 1: 278-287. https://doi.org/10.1111/j.1753-0407.2009.00045.x
  34. Ferre P, Foufelle F. 2010. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes. Metab. 12 Suppl 2: 83-92. https://doi.org/10.1111/j.1463-1326.2010.01275.x
  35. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. 2004. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86: 839-848. https://doi.org/10.1016/j.biochi.2004.09.018
  36. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. 2012. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367: 1098-1107. https://doi.org/10.1056/NEJMoa1114287
  37. Houghton CA, Fassett RG, Coombes JS. 2016. Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician's expectation be matched by the reality? Oxid. Med. Cell. Longev. 2016: 7857186.
  38. Balkwill F, M antovani A. 2001. Iflammation and cancer: back to Virchow? Lancet 357: 539-545.
  39. Yang Y, Cai X, Yang J, Sun X, Hu C, Yan Z, et al. 2014. Chemoprevention of dietary digitoflavone on colitis-associated colon tumorigenesis through inducing Nrf2 signaling pathway and inhibition of inflammation. Mol. Cancer 13: 48. https://doi.org/10.1186/1476-4598-13-48
  40. Klaunig JE, Wang Z, Pu X, Zhou S. 2011. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol. Appl. Pharmacol. 254: 86-99.
  41. Lee JS, Surh YJ. 2005. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 224: 171-184. https://doi.org/10.1016/j.canlet.2004.09.042
  42. Sharma S, Stutzman JD, Kelloff GJ, Steele VE. 1994. Screening of potential chemopreventive agents using biochemical markers of carcinogenesis. Cancer Res. 54: 5848-5855.
  43. Cerutti PA. 1985. Prooxidant states and tumor promotion. Science 227: 375-381. https://doi.org/10.1126/science.2981433
  44. Froyen EB, Steinberg FM. 2011. Soy isoflavones increase quinone reductase in hepa-1c1c7 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element. J. Nutr. Biochem. 22: 843-848. https://doi.org/10.1016/j.jnutbio.2010.07.008
  45. Setchell KD, Clerici C, Lephart ED, Cole SJ, Heenan C, Castellani D, et al. 2005. S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am. J. Clin. Nutr. 81: 1072-1079. https://doi.org/10.1093/ajcn/81.5.1072
  46. Zhang T, Liang X, Shi L, Wang L, Chen J, Kang C, et al. 2013. Estrogen receptor and PI3K/Akt signaling pathway involvement in S-(-)equol-induced activation of Nrf2/ARE in endothelial cells. PLoS One 8: e79075.
  47. Roskoski R Jr. 2012. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66: 105-143. https://doi.org/10.1016/j.phrs.2012.04.005
  48. Knebel B, Lehr S, Hartwig S, Haas J, Kaber G, Dicken HD, et al. 2014. Phosphorylation of sterol regulatory elementbinding protein (SREBP)-1c by p38 kinases, ERK and JNK influences lipid metabolism and the secretome of human liver cell line HepG2. Arch. Physiol. Biochem. 120: 216-227. https://doi.org/10.3109/13813455.2014.973418
  49. Kotzka J, Muller-Wieland D, Roth G, Kremer L, Munck M, Schurmann S, et al. 2000. Sterol regulatory element binding proteins (SREBP)-1a and SREBP-2 are linked to the MAPkinase cascade. J. Lipid Res. 41: 99-108.

피인용 문헌

  1. Antioxidative effect of soybean milk fermented by Lactobacillus plantarum Y16 on 2, 2 -azobis (2-methylpropionamidine) dihydrochloride (ABAP)-damaged HepG2 cells vol.44, pp.no.pa, 2021, https://doi.org/10.1016/j.fbio.2021.101120