DOI QR코드

DOI QR Code

Simultaneous Detection of Four Foodborne Viruses in Food Samples Using a One-Step Multiplex Reverse Transcription PCR

  • Lee, Shin-Young (Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University) ;
  • Kim, Mi-Ju (Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University) ;
  • Kim, Hyun-Joong (Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University) ;
  • Jeong, KwangCheol Casey (Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University) ;
  • Kim, Hae-Yeong (Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University)
  • Received : 2017.10.13
  • Accepted : 2017.11.09
  • Published : 2018.02.28

Abstract

A one-step multiplex reverse transcription PCR (RT-PCR) method comprising six primer sets (for the detection of norovirus GI and GII, hepatitis A virus, rotavirus, and astrovirus) was developed to simultaneously detect four kinds of pathogenic viruses. The size of the PCR products for norovirus GI and GII, hepatitis A virus (VP3/VP1 and P2A regions), rotavirus, and astrovirus were 330, 164, 244, 198, 629, and 449 bp, respectively. The RT-PCR with the six primer sets showed specificity for the pathogenic viruses. The detection limit of the developed multiplex RT-PCR, as evaluated using serially diluted viral RNAs, was comparable to that of one-step single RT-PCR. Moreover, this multiplex RT-PCR was evaluated using food samples such as water, oysters, lettuce, and vegetable product. These food samples were artificially spiked with the four kinds of viruses in diverse combinations, and the spiked viruses in all food samples were detected successfully.

Keywords

References

  1. Van Maarseveen NM, Wessels E, de Brouwer CS, Vossen AC, Claas EC. 2010. Diagnosis of viral gastroenteritis by simultaneous detection of adenovirus group f, astrovirus, rotavirus group A, norovirus genogroups I and II, and sapovirus in two internally controlled multiplex real-time PCR assays. J. Clin. Virol. 49: 205-210. https://doi.org/10.1016/j.jcv.2010.07.019
  2. Clark B, McKendrick M. 2004. Areview of viral gastroenteritis. Curr. Opin. Infect. Dis. 17: 461-469. https://doi.org/10.1097/00001432-200410000-00011
  3. Koopmans M, Duizer E. 2004. Foodborne viruses: an emerging problem. Int. J. Food Microbiol. 90: 23-41. https://doi.org/10.1016/S0168-1605(03)00169-7
  4. Butot S, Putallaz T, Sanchez G. 2007. Procedure for rapid concentration and detection of enteric viruses from berries and vegetables. Appl. Environ. Microbiol. 73: 186-192. https://doi.org/10.1128/AEM.01248-06
  5. Ikner LA, Soto-Beltran M, Bright KR. 2011. New method using a positively charged microporous filter and ultrafiltration for concentration of viruses from tap water. Appl. Environ. Microbiol. 77: 3500-3506. https://doi.org/10.1128/AEM.02705-10
  6. Kim MJ, Lee SY, Kim HJ, Lee JS, Joo IS, Kwak HS, et al. 2016. Development of a one-step duplex RT-PCR method for the simultaneous detection of VP3/VP1 and VP1/P2B regions of the hepatitis A virus. J. Microbiol. Biotechnol. 26: 1398-1403.
  7. Kittigul L, Singhaboot Y, Chavalitshewinkoon-Petmitr P, Pombubpa K, Hirunpetcharat C. 2015. A comparison of virus concentration methods for molecular detection and characterization of rotavirus in bivalve shellfish species. Food Microbiol. 46: 161-167. https://doi.org/10.1016/j.fm.2014.07.020
  8. Lee MJ, Kim WH, Cho HG, Lee SS. 2012. Epidemiological study of ground-waterborne norovirus GI.3-associated gastroenteritis outbreaks in Gyeonggi province of South Korea in May 2011. J. Bacteriol. Virol. 42: 232-241. https://doi.org/10.4167/jbv.2012.42.3.232
  9. Lee SG, Cho HG, Paik SY. 2015. Molecular epidemiology of norovirus in South Korea. BMB Rep. 48: 61-67. https://doi.org/10.5483/BMBRep.2015.48.2.254
  10. Wang D, Wu Q, Kou X, Yao L, Zhang J. 2008. Distribution of norovirus in oyster tissues. J. Appl. Microbiol. 105: 1966-1972. https://doi.org/10.1111/j.1365-2672.2008.03970.x
  11. Le Guyader FS, Loisy F, Atmar RL, Hutson AM, Estes MK, Ruvoen-Clouet N, et al. 2006. Norwalk virus-specific binding to oyster digestive tissues. Emerg. Infect. Dis. 12: 931-936. https://doi.org/10.3201/eid1206.051519
  12. Gentry-Shields J, Jaykus LA. 2015. Comparison of process control viruses for use in extraction and detection of human norovirus from food matrices. Food Res. Int. 77: 320-325.
  13. Vinje J. 2015. Advances in laboratory methods for detection and typing of norovirus. J. Clin. Microbiol. 53: 373-381. https://doi.org/10.1128/JCM.01535-14
  14. Yan H, Yagyu F, Okitsu S, Nishio O, Ushijima, H. 2003. Detection of norovirus (GI, GII), sapovirus and astrovirus in fecal samples using reverse transcription single-round multiplex PCR. J. Virol. Methods 114: 37-44. https://doi.org/10.1016/j.jviromet.2003.08.009
  15. Atmar RL, Estes MK. 2001. Diagnosis of noncultivatable gastroenteritis viruses, the human caliciviruses. Clin. Microbiol. Rev. 14: 15-37. https://doi.org/10.1128/CMR.14.1.15-37.2001
  16. Khamrin P, Okame M, Thongprachum A, Nantachit N, Nishimura S, Okitsu S, et al. 2011. A single-tube multiplex PCR for rapid detection in feces of 10 viruses causing diarrhea. J. Virol. Methods 173: 390-393. https://doi.org/10.1016/j.jviromet.2011.02.012
  17. Kojima S, Kageyama T, Fukushi S, Hoshino FB, Shinohara M, Uchida K, et al. 2002. Genogroup-specific PCR primers for detection of Norwalk-like viruses. J. Virol. Methods 100: 107-114. https://doi.org/10.1016/S0166-0934(01)00404-9
  18. Bower WA, Nainan OV, Han X, Margolis HS. 2000. Duration of viremia in hepatitis A virus infection. J. Infect. Dis. 182: 12-17. https://doi.org/10.1086/315701
  19. Noel JS, Lee TW, Kurtz JB, Glass RI, Monroe SS. 1995. Typing of human astroviruses from clinical isolates by enzyme immunoassay and nucleotide sequencing. J. Clin. Microbiol. 33: 797-801.
  20. Iturriza-Gomara M, Kang G, Gray J. 2004. Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. J. Clin. Virol. 31: 259-265. https://doi.org/10.1016/j.jcv.2004.04.009
  21. Karim MR, Rhodes ER, Brinkman N, Wymer L, Fout GS. 2009. New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. Appl. Environ. Microbiol. 75: 2393-2399. https://doi.org/10.1128/AEM.00922-08
  22. Woods JW, Calci KR, Marchant-Tambone JG, Burkhardt W III. 2016. Detection and molecular characterization of norovirus from oysters implicated in outbreaks in the US. Food Microbiol. 59: 76-84.
  23. Randazzo W, Piqueras J, Rodriguez-Diaz J, Aznar R, Sanchez G. 2017. Improving efficiency of viability-qPCR for selective detection of infectious HAV in food and water samples. J. Appl. Microbiol. DOI: 10.1111/jam.13519. [In Press].
  24. Hennechart-Collette C, Martin-Latil S, Fraisse A, Perelle S. 2017. Comparison of three extraction methods to detect noroviruses in dairy products. Food Microbiol. 61: 113-119. https://doi.org/10.1016/j.fm.2016.09.001
  25. Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, et al. 1990. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J. Clin. Microbiol. 28: 276-282.
  26. Lee HT, Kim MS, Paik SY, Lee CH, Jheong WH, Kim JM, et al. 2011. Evaluation of electropositive filtration for recovering norovirus in water. J. Water Health 9: 27-36. https://doi.org/10.2166/wh.2010.190
  27. Wyn-Jones AP, Sellwood J. 2001. Enteric viruses in the aquatic environment. J. Appl. Microbiol. 91: 945-962. https://doi.org/10.1046/j.1365-2672.2001.01470.x
  28. Coudray-Meunier C, Fraisse A, Martin-Latil S, Guillier L, Delannoy S, Fach P, et al. 2015. A comparative study of digital RT-PCR and RT-qPCR for quantification of hepatitis A virus and norovirus in lettuce and water samples. Int. J. Food Microbiol. 201: 17-26. https://doi.org/10.1016/j.ijfoodmicro.2015.02.006
  29. Bartsch C, Szabo K, Dinh-Thanh M, Schrader C, Trojnar E, Johne R. 2016. Comparison and optimization of detection methods for noroviruses in frozen strawberries containing different amounts of RT-PCR inhibitors. Food Microbiol. 60: 124-130. https://doi.org/10.1016/j.fm.2016.07.005
  30. Fraisse A, Coudray-Meunier C, Martin-Latil S, Hennechart-Collette C, Delannoy S, Fach P, et al. 2017. Digital RT-PCR method for hepatitis A virus and norovirus quantification in soft berries. Int. J. Food Microbiol. 243: 36-45. https://doi.org/10.1016/j.ijfoodmicro.2016.11.022
  31. Williams-Woods J, Gonzalez-Escalona N, Burkhardt W III. 2011. Direct sequencing of hepatitis A virus and norovirus RT-PCR products from environmentally contaminated oyster using M13-tailed primers. J. Virol. Methods 178: 253-257. https://doi.org/10.1016/j.jviromet.2011.09.014
  32. Manso CF, Romalde JL. 2013. Detection and characterization of hepatitis A virus and norovirus in mussels from Galicia (NW Spain). Food Environ. Virol. 5: 110-118.
  33. Said R, Wolfaardt M, Taylor MB. 2014. Molecular characterisation of hepatitis A virus strains from water sources in South Africa. Water Sci. Technol. 69: 923-933. https://doi.org/10.2166/wst.2013.799

Cited by

  1. Sample preparation in foodomic analyses vol.39, pp.13, 2018, https://doi.org/10.1002/elps.201800029
  2. Development of a reverse transcription (RT) polymerase chain reaction (PCR) method for the detection of human norovirus in bivalve molluscs vol.83, pp.5, 2021, https://doi.org/10.2166/wst.2021.048
  3. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques vol.134, pp.None, 2018, https://doi.org/10.1016/j.foodcont.2021.108764