DOI QR코드

DOI QR Code

Assessing the effects of mineral content and porosity on ultrasonic wave velocity

  • Received : 2017.01.29
  • Accepted : 2017.08.24
  • Published : 2018.03.20

Abstract

The influences of mineral content and porosity on ultrasonic wave velocity were assessed for ten hornfelsic rocks collected from southern and western parts of the city of Hamedan, western Iran. Selected rock samples were subjected to mineralogical, physical, and index laboratory tests. The tested rocks contain quartz, feldspar, biotite, muscovite, garnet, sillimanite, kyanite, staurolite, graphite and other fine grained cryptocrystalline matrix materials. The values of dry unit weight of the rocks were high, but the values of porosity and water absorption were low. In the rocks, the values of dry unit weight are related to the presence of dense minerals such as garnet so not affected by porosity. The statistical relationships between mineral content, porosity and ultrasonic wave velocity indicated that the porosity is the most important factor influencing ultrasonic wave velocity of the studied rocks. The values of P-wave velocity of the rocks range from moderate to very high. Empirical equations, relevant to different parameters of the rocks, were proposed to determine the rocks' essential characteristics such as primary and secondary wave velocities. Quality indexes (IQ) of the studied samples were determined based on P-wave velocities of them and their composing minerals and the samples were classified as non-fissured to moderately fissured rocks. Also, all tested samples are classified as slightly fissured rocks according to the ratio of S-wave to P-wave velocities.

Keywords

References

  1. Akesson, U., Stigh, J., Lindqvist, J.E. and Goransson, M. (2003), "The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy", Eng. Geol., 68(3-4), 275-288. https://doi.org/10.1016/S0013-7952(02)00233-8
  2. ASTM (1996), Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock, American Society for Testing and Materials, West Conshohocken, Pennsylvania, U.S.A.
  3. Azimian, A. and Ajalloeian, R. (2015), "Empirical correlation of physical and mechanical properties of marly rocks with P wave velocity", Arab. J. Geosci., 8(4), 2069-2079. https://doi.org/10.1007/s12517-013-1235-4
  4. Bandini, A. and Berry, P. (2013), "Influence of marble's texture on its mechanical behavior", Rock Mech. Rock Eng., 46(4), 785-799. https://doi.org/10.1007/s00603-012-0315-1
  5. Durrast, H. and Siegesmund, S. (1999), "Correlation between rock fabrics and physical properties of carbonate reservoir rocks", J. Earth Sci., 88(3), 392-408.
  6. Ersoy, A. and Waller, M.D. (1995), "Textural characterization of rocks", Eng. Geol., 39, 123-136. https://doi.org/10.1016/0013-7952(95)00005-Z
  7. Fereidooni, D., Khanlari, G.R. and Heidari, M. (2015), "Assessment of a modified rock mass classification system for rock slope stability analysis in the Q-system", Earth Sci. Res. J., 19(2), 147-152. https://doi.org/10.15446/esrj.v19n2.49127
  8. Fereidooni, D., Khanlari, G.R., Heidari, M. and Sepahigero, A.A. (2015), "Assessment of engineering behavior of foliated rocks using some index tests", Proceedings of the 24th International Mining Congress and Exhibition of Turkey-IMCET'15, Antalya, Turkey, April.
  9. Fereidooni, D., Khanlari, G. R., Heidari, M., Sepahi-Gero, A.A. and Kolahi-Azar, A.P. (2016), "Assessment of inherent anisotropy and confining pressure influences on mechanical behavior of anisotropic foliated rocks under triaxial compression", Rock Mech. Rock Eng., 49(6), 2155-2163. https://doi.org/10.1007/s00603-015-0814-y
  10. Fourmaintraux, D. (1976), Characterization of Rocks; Laboratory Tests: Chapter IV in La Mechanique des Roches Applique aux Ouvrges du Genie Civil by Marc Panet et al., Ecole Nationale des Ponts et Chaussees, Paris, France.
  11. Goodman, R.E. (1989), Introduction to Rock Mechanics, John Wiley & Sons Inc., New York, U.S.A.
  12. GSI, (Geological Society of Iran), (1977), Geological Quadrangle Map of Iran, No. D6, Scale 1:250000, Offset Press Inc., Tehran, Iran.
  13. Guyader, J. and Denis, A. (1986), "Propagation des ondes dans les roches anisotropes sous contrainte, Evaluation de la qualite des schistes ardoisiers", Bull. Eng. Geol. Environ., 33(1), 49-55.
  14. IAEG (1979), "Classification of rocks and soils for engineering geological mapping, part 1: Rock and soil materials, report of the commission of engineering geological mapping", Bull. Assoc. Eng. Geol., 19, 364-371. https://doi.org/10.1007/BF02600503
  15. Franklin, J.A. (1972), "Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties", J. Rock Min. Sci. Geomech. Abstr., 16, 141-156.
  16. Ulusay, R. and Hudson, J.A. (2007), The Blue Book: The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring, 1974-2006, ISRM Turkish National Group, Ankara, Turkey.
  17. Jeng, F.S., Weng, M.C., Lin, M.L. and Huang, T.H. (2004), "Influence of petrographic parameters on geotechnical properties of tertiary sandstones from Taiwan", Eng. Geol., 73(1-2), 71-91. https://doi.org/10.1016/j.enggeo.2003.12.001
  18. Jensen, M.B. and Elming, S.A. (2013), "Magnetic, seismic and mechanical properties of porphyritic meta-rhyolites-the effect of microscopic foliation on rock strength and P-wave velocity in drill cores", Eng. Geol., 157, 93-102. https://doi.org/10.1016/j.enggeo.2013.01.008
  19. Kakar, R. and Kakar, S. (2016), "Rayleigh wave in an anisotropic heterogeneous crustal layer lying over a gravitational sandy substratum", Geomech. Eng., 10(2), 137-154. https://doi.org/10.12989/gae.2016.10.2.137
  20. Karakul, H. and Ulusay, R. (2013), "Empirical correlations for predicting strength properties of rocks from p-wave velocity under different degrees of saturation", Rock Mech. Rock Eng., 46(5), 981-999. https://doi.org/10.1007/s00603-012-0353-8
  21. Khanlari, G.R., Heidari, M., Sepahi-Gero, A.A. and Fereidooni, D. (2014), "Determination of geotechnical properties of anisotropic rocks using some index tests", Geotech. Test. J., 37(2), 1-13.
  22. Khanlari, G.R., Heidari, M., Sepahi-Gero, A.A. and Fereidooni, D. (2014), "Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests", Eng. Geol., 169, 80-90. https://doi.org/10.1016/j.enggeo.2013.11.014
  23. Kim, H., Cho, J.W., Song, I. and Min, K.B. (2012), "Anisotropy of elastic moduli, P-wave velocities, and thermal conductivities of Asan Gneiss, Boryeong Shale, and Yeoncheon Schist in Korea", Eng. Geol., 147, 68-77.
  24. Kossev, N.V. (1970), "Correlations entre les caracteristiques physiques et mecaniques de certaines roches, ayant egard au degre de lalteration des roches", Proceedings of the 2nd Congress International Society Rock Mechanics, Beograd, Serbia, September.
  25. Li X. and Tao, M. (2015), "The influence of initial stress on wave propagation and dynamic elastic coefficients", Geomech. Eng., 8(3), 377-390. https://doi.org/10.12989/gae.2015.8.3.377
  26. Martinez-Martinez, J., Benavente, D. and Garcia del Cura, M.A. (2007), "Petrographic quantification of brecciated rocks by image analysis application to the interpretation of elastic wave velocities", Eng. Geol., 90(1-2), 41-54. https://doi.org/10.1016/j.enggeo.2006.12.002
  27. Nefeslioglu, H.A. (2013), "Evaluation of geo-mechanical properties of very weak and weak rock materials by using nondestructive techniques: Ultrasonic pulse velocity measurements and reflectance spectroscopy", Eng. Geol., 160, 8-20. https://doi.org/10.1016/j.enggeo.2013.03.023
  28. Pappalardo, G. (2015), "Correlation between p-wave velocity and physical-mechanical properties of intensely jointed dolostones, Peloritani mounts, NE Sicily", Rock Mech. Rock Eng., 48(4), 1711-1721. https://doi.org/10.1007/s00603-014-0607-8
  29. Ruedrich, J., Siegesmund, S. and Richter, D. (2001a), "Marble columns and their state of weathering: Structural evidence and ultrasonic tomography", Zeitschrift der Deutschen Geologischen Gesellschaft, 152, 665-680.
  30. Ruedrich, J., Weiss, T. and Siegesmund, S. (2001b), "Deterioration characteristics of marbles from the Marmopalais Postdam (Germany): A compilation", Zeitschrift der Deutschen Geologischen Gesellschaft, 152, 637-663.
  31. Shalabi, F.I., Cording, E.J. and Al-Hattamleh, O.H. (2007), "Estimation of rock engineering properties using hardness tests", Eng. Geol., 90(3-4), 138-147. https://doi.org/10.1016/j.enggeo.2006.12.006
  32. Sharma, P.K. and Singh, T.N. (2008), "A correlation between Pwave velocity, impact strength index, slake durability index and uniaxial compressive strength", Bull. Eng. Geol. Environ., 67(1), 17-22. https://doi.org/10.1007/s10064-007-0109-y
  33. Sharma, P.K., Khandelwal, M. and Singh, T.N. (2011), "A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and p-wave velocity", J. Earth Sci., 100(1), 189-195.
  34. Teachavorasinskun, S. and Pongvithayapanu, P. (2016), Shear wave velocity of sands subject to large strain triaxial loading", Geomech. Eng., 11(5), 713-723. https://doi.org/10.12989/gae.2016.11.5.713
  35. Tourenq, C., Fourmaintraux, D. and Denis, A. (1971), "Propagation des ondes etdiscontinuities des roches", Proceedings of the International Society of Rock Mechanics, Symposium on Rock Fracture, Nancy, France,October.
  36. Varun Kumar, K., Jothi Saravanan, T., Sreekala, R., Gopalakrishnan, N. and Mini, K.M. (2017), "Structural damage detection through longitudinal wave propagation using spectral finite element method", Geomech. Eng., 12(1), 161-183. https://doi.org/10.12989/gae.2017.12.1.161
  37. Willard, R.J. and McWilliams, J.R. (1969), "Microstructural techniques in the study of physical properties of rock", J. Rock Mech. Min. Sci., 6(1), 1-12. https://doi.org/10.1016/0148-9062(69)90025-4
  38. Yagis, S. (2011), "P-wave velocity test for assessment of geotechnical properties of some rock materials", Bull. Mater. Sci., 34(4), 947-953. https://doi.org/10.1007/s12034-011-0220-3