Acknowledgement
Supported by : National Natural Science Foundation of China, Ministry of Education of China
References
- Cai, W., Dou, L.M., Si, G.Y., Cao, A.Y., He, J. and Liu, S. (2016), "A principal component analysis/fuzzy comprehensive evaluation model for coal burst liability assessment", J. Rock Mech. Min. Sci., 81, 62-69.
- Dehghan, S., Shahriar, K., Maarefvand, P. and Goshtasbi, K. (2013), "3-D modeling of rock burst in pillar No. 19 of Fetr6 chromite mine", J. Min. Sci. Technol., 23(2), 231-236. https://doi.org/10.1016/j.ijmst.2013.04.014
- Dou, L.M., Lu, C.P., Mu, Z.L., Zhang, X.T. and Li, Z.H. (2006), "Rock burst tendency of coal-rock combinations sample", J. Min. Safe. Eng., 23(1), 43-46.
- Feng, X.J., Wang, E.Y., Shen, R.X., Wei, M.Y., Chen, Y. and Cao, X.Q. (2011), "The dynamic impact of rock burst induced by the fracture of the thick and hard key stratum", Proc. Eng., 26, 457-465. https://doi.org/10.1016/j.proeng.2011.11.2192
- GB/T 25217.2-2010 (2010), Methods for Test, Monitoring and Prevention of Rock Burst-Part 2: Classification and laboratory Test Method on Bursting Liability of Coal, Standards Press of China, Beijing, China.
- Ghanbari, E. and Hamidi, A. (2014), "Numerical modeling of rapid impact compaction in loose sands", Geomech. Eng., 6(5), 487-502. https://doi.org/10.12989/gae.2014.6.5.487
- Gholizadeh, S., Leman, Z. and Baharudin, B.T.H.T. (2015) "A review of the application of acoustic emission technique in engineering", Struct. Eng. Mech., 54(6), 1075-1095. https://doi.org/10.12989/sem.2015.54.6.1075
- Guo, W.Y., Zhao, T.B., Tan, Y.L., Yu, F.H., Hu, S.C. and Yang, F.Q. (2017), "Progressive mitigation method of rock bursts under complicated geological conditions", J. Rock Mech. Min. Sci., 96, 11-22.
- Hu, S.C., Tan, Y.L., Zhou, H., Guo, W.Y., Hu, D.W., Meng, F.Z. and Liu, Z.G. (2017), "Impact of bedding planes on mechanical properties of sandstone", Rock Mech. Rock Eng., 50(8), 2243-2251. https://doi.org/10.1007/s00603-017-1239-6
- Huang, B.X. and Liu, J.W. (2013), "The effect of loading rate on the behavior of samples composed of coal and rock", J. Rock Mech. Min. Sci., 61, 23-30.
- Jiang, Q., Feng, X.T., Xiang, T.B. and Su, G.S. (2010), "Rockburst characteristics and numerical simulation based on a new energy index: a case study of a tunnel at 2,500 m depth", Bull. Eng. Geol. Environ., 69(3), 381-388. https://doi.org/10.1007/s10064-010-0275-1
- Jiang, Y.D., Wang, H.W., Zhao, Y.X., Zhu, J. and Pang, X.F. (2011), "The influence of roadway backfill on bursting liability and strength of coal pillar by numerical investigation", Proc. Eng., 26, 1125-1143. https://doi.org/10.1016/j.proeng.2011.11.2283
- Kidybinski, A. (1981), "Bursting liability indexes of coal", J. Rock Mech. Min. Sci. Geomech. Abstr., 18(4), 295-304. https://doi.org/10.1016/0148-9062(81)91194-3
- Li, H.T., Zhou, H.W., Jiang, Y.D. and Wang, H.W. (2016), "An evaluation method for the bursting characteristics of coal under the effect of loading rate", Rock Mech. Rock Eng., 49(8), 3281-3291. https://doi.org/10.1007/s00603-016-0984-2
- Li, J.Q., Qi, Q.X., Mao, D.B. and Wang, Y.X. (2005), "Discussion on evaluation method of bursting liability with composite model of coal and rock", Chin. J. Rock Mech. Eng., 24(S1), 4805-4810.
- Liu, B., Yang, R.S., Guo, D.M. and Zhang, D.Z. (2004), "Burstprone experiments of coal-rock combination at -1100 m level in suncun coal mine", Chin. J. Rock Mech. Eng., 23(14), 2402-2408.
- Liu, X.S., Ning, J.G., Tan, Y.L. and Gu, Q.H. (2016), "Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading", J. Rock Mech. Min. Sci., 85, 27-32.
- Liu, X.S., Tan, Y.L., Ning, J.G., Tian, C.L. and Tian, Z.W. (2016), "Energy criterion of abutment pressure induced strain-mode rockburst", Rock Soil Mech., 37(10), 2929-2936.
- Ning, J.G., Wang, J., Tan, Y.L. and Shi, X.S. (2016), "Dissipation of impact stress waves within the artificial blasting damage zone in the surrounding rocks of deep roadway", Shock Vibr.
- Pan, Y.S., Geng, L. and Li, Z.H. (2010), "Research on evaluation indexes for impact tendency and danger of coal seam", J. Chin. Coal Soc., 35(12), 1175-1178.
- Panaghi, K., Golshani, A. and Takemura, T. (2015), "Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests", Geomech. Eng., 9(6), 793-813. https://doi.org/10.12989/gae.2015.9.6.793
- Prochazka, P.P. (2014), "Rock bursts due to gas explosion in deep mines based on hexagonal and boundary elements", Adv. Eng. Softw., 72, 57-65. https://doi.org/10.1016/j.advengsoft.2013.06.013
- Qiu, S.L., Feng, X.T., Jiang, Q. and Zhang, C.Q. (2014), "A novel numerical index for estimating strainburst vulnerability in deep tunnels", Chin. J. Rock Mech. Eng., 33(10), 2007-2017.
- Song, D.Z., Wang, E.Y., Li, Z.H., Qiu, L.M. and Xu, Z.Y. (2017), "EMR: An effective method for monitoring and warning of rock burst hazard", Geomech. Eng., 12(1), 53-69. https://doi.org/10.12989/gae.2017.12.1.053
- Tajdus, A., Cieslik, J. and Tajdus, K. (2014), "Rockburst hazard assessment in bedded tock mass: Laboratory tests of rock samples and numerical calculations", Arch. Min. Sci., 59(3), 591-608.
- Tan, Y.L., Guo, W.Y., Gu, Q.H., Zhao, T.B., Yu, F H., Hu, S.C. and Yin, Y.C. (2016), "Research on the rockburst tendency and AE characteristics of inhomogeneous coal-rock combination bodies", Shock Vibr., 1-11.
- Tan, Y.L., Liu, X.S., Ning, J.G. and Lu, Y.W. (2017), "In situ investigations on failure evolution of overlying strata induced by mining multiple coal seams", Geotech. Test. J., 40(2), 244-257.
- Wang, J.C., Jiang, F.X., Meng, X.J., Wang, X.Y., Zhu, S.T. and Feng, Y. (2016), "Mechanism of rock burst occurrence in specially thick coal seam with rock parting", Rock Mech. Rock Eng., 49(5), 1953-1965. https://doi.org/10.1007/s00603-015-0894-8
- Wang, T., Jiang, Y.D., Zhan, S.J. and Wang, C. (2014), "Frictional sliding tests on combined coal-rock samples", J. Rock Mech. Geotech. Eng., 6(3), 280-286. https://doi.org/10.1016/j.jrmge.2014.03.007
- Yang, F.J., Zhou, H., Lu, J.J., Zhang, C.Q. and Hu, D.W. (2015), "An energy criterion in process of rockburst", Chin. J. Rock Mech. Eng., 34(S1), 2706-2714.
- Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557. https://doi.org/10.12989/gae.2015.8.4.541
- Zhang, X.Y., Feng, G.R., Kang, L.X. and Yang, S.S. (2009), "Method to determine burst tendency of coal rock by residual energy emission speed", J. Chin. Coal Soc., 34(9), 1165-1168.
- Zhao, T.B., Guo, W.Y., Lu, C.P. and Zhao, G.M. (2016), "Failure characteristics of combined coal-rock with different interfacial angles", Geomech. Eng., 11(3), 345-359. https://doi.org/10.12989/gae.2016.11.3.345
- Zhao, T.B., Guo, W.Y., Tan, Y.L., Lu, C.P. and Wang, C.W. (2017), "Case histories of rock bursts under complicated geological conditions", Bull. Eng. Geol. Environ., 1-17.
- Zhao, Z.H., Wang, W.M., Wang, L.H. and Dai, C.Q. (2015), "Compression-shear strength criterion of coal-rock combination model considering interface effect", Tunn. Undergr. Sp. Technol., 47, 193-199. https://doi.org/10.1016/j.tust.2015.01.007
- Zuo, J.P., Wang, Z.F., Zhou, H.W., Pei, J.L. and Liu, J.F. (2013), "Failure behavior of a rock-coal-rock combined body with a weak coal interlayer", J. Min. Sci. Technol., 23(6), 907-912. https://doi.org/10.1016/j.ijmst.2013.11.005
Cited by
- Prediction Model of Failure Zone in Roadway Sidewall considering the Lithologic Effect of Rock Formation vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/9627564
- An Experimental Study of the Uniaxial Failure Behaviour of Rock-Coal Composite Samples with Pre-existing Cracks in the Coal vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/8397598
- Physio-Mechanical Characterization of Rocks vol.49, pp.3, 2018, https://doi.org/10.1520/jte20180955
- Study on Failure Modes and Energy Evolution of Coal-Rock Combination under Cyclic Loading vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/5731721
- Impact Dynamic Properties and Energy Evolution of Damaged Sandstone Based on Cyclic Loading Threshold vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/6615602
- Effects of Temperature and Water on Mechanical Properties, Energy Dissipation, and Microstructure of Argillaceous Sandstone under Static and Dynamic Loads vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/8827705
- Experimental Study on the Dynamic Mechanical Properties of Large-Diameter Mortar and Concrete Subjected to Cyclic Impact vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/8861197
- Study on Microseismic Monitoring, Early Warning, and Comprehensive Prevention of a Rock Burst under Complex Conditions vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8863771
- Mechanical Characteristics of Coal Samples under Triaxial Unloading Pressure with Different Test Paths vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/8870821
- Study on Deflection of Surrounding Rock Force Chain and Disaster Mechanism of Instability in Deep Stope vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/8883897
- Analysis of Failure Characteristics and Strength Criterion of Coal-Rock Combined Body with Different Height Ratios vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/8842206
- Laboratory investigation of the mechanical properties of coal-rock combined body vol.79, pp.4, 2018, https://doi.org/10.1007/s10064-019-01613-z
- Numerical simulation research on response characteristics of surrounding rock for deep super-large section chamber under dynamic and static combined loading condition vol.27, pp.12, 2018, https://doi.org/10.1007/s11771-020-4509-5