Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Aldaood, A., Bouasker, M. and Al-Mukhtar M. (2014), "Impact of freeze-thaw cycles on mechanical behaviour of lime stabilized gypseous soils", Cold Reg. Sci. Technol., 99, 38-45. https://doi.org/10.1016/j.coldregions.2013.12.003
- Angin I., Sari S. and Aksakal E.L. (2016), "Effects of diatomite (DE) application on physical properties of soils subjected to freeze-thaw cycles", Soil Till. Res., 160, 34-41. https://doi.org/10.1016/j.still.2016.02.008
- Cheng, G.D., Wu, Q.B. and Ma, W. (2008), "Innovative designs of the permafrost for the Qinghai-Tibet Railway", Proceedings of the 9th International Conference Permafrost, Fairbanks, Alaska, U.S.A., June-July.
- Cui, Z.D., He, P.P. and Yang, W.H. (2014), "Mechanical properties of a silty clay subjected to freezing-thawing", Cold Reg. Sci. Technol., 98, 26-34. https://doi.org/10.1016/j.coldregions.2013.10.009
- Ghazavi, M. and Roustaei, M. (2013), "Freeze-thaw performance of clayey soil reinforced with geotextile layer", Cold Reg. Sci. Technol., 89, 22-29. https://doi.org/10.1016/j.coldregions.2013.01.002
- Hotineanu, A., Bouasker, M., Aldaood, A. and Al-Mukhtar, M. (2015), "Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays", Cold Reg. Sci. Technol., 119, 151-157. https://doi.org/10.1016/j.coldregions.2015.08.008
- Kamei, T., Ahmed, A. and Shibi, T. (2012), "Effect of freeze-thaw cycles on durability and strength of very soft clay soil stabilized with recycled Bassanite", Cold Reg. Sci. Technol., 82, 124-129. https://doi.org/10.1016/j.coldregions.2012.05.016
- Li, G.Y., Ma, W., Mu, Y.H., Wang, F. and Fan, S.Z. (2017), "Effects of freeze-thaw cycle on engineering properties of loess used as road fills in seasonally frozen ground regions, North China", J. Mountain Sci., 14(2), 356-368. https://doi.org/10.1007/s11629-016-4005-4
- Liang, Q.G., Li, J., Wu, X.Y. and Zhou, A.N. (2016), "Anisotropy of Q2 loess in the Baijiapo Tunnel on the Lanyu Railway, China", Bull. Eng. Geol. Environ., 75(1), 109-124. https://doi.org/10.1007/s10064-015-0723-z
- Mahya, R., Abolfazl, E. and Mahmoud, G. (2015), "Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters", Cold Reg. Sci. Technol., 120, 127-137. https://doi.org/10.1016/j.coldregions.2015.09.011
- Matsumura, S., Miura, S., Yokohama, S. and Kawamura, S. (2015), "Cyclic deformation-strength evaluation of compacted volcanic soil subjected to freeze-thaw sequence", Soil. Found., 55(1), 86-98. https://doi.org/10.1016/j.sandf.2014.12.007
- Mu, Y.H., Ma, W., Li, G.Y. and Mao, Y.C. (2011), "Quantitative analysis of impacts of freeze-thaw cycles upon microstructure of compacted loess", Chin. J. Geotech. Eng., 33(12), 1919-1925.
- Orakoglu, M.E., Liu, J. and Niu, F. (2016), "Experimental and modeling investigation of the thermal conductivity of fiberreinforced soil subjected to freeze-thaw cycles", Appl. Therm. Eng., 108, 824-832. https://doi.org/10.1016/j.applthermaleng.2016.07.112
- Pang, X.Q., Hu, Z.Q. and Liu, Y. (2016), "Experimental study on mechanics properties damage to the loess under the freeze-thaw cycle", J. Railway Sci. Eng., 13(4), 669-674.
- Peter, V. (1998), "Permeability and volume changes in till due to cyclic freeze/thaw", Can. Geotech. J., 35(3), 471-477. https://doi.org/10.1139/t98-015
- Qi, J.L., Pieter, A.V. and Cheng, G.D. (2006), "A review of the influence of Freeze-thaw cycles on soil geotechnical properties", Permafrost Periglac, 17(3), 245-252. https://doi.org/10.1002/ppp.559
- Qi, J.L., Zhang, J.M. and Zhu, Y.L. (2003), "Influence of greezingthawing on soil structure and its soil mechanics significance", Chin. J. Rock Mech. Eng., 22(2), 2690-2694.
- Tian, H.H., Wei, C.F., Wei, H.Z. and Zhou, J.Z. (2014), "Freezing and thawing characteristics of frozen soils: Bound water content and hysteresis phenomenon", Cold Reg. Sci. Technol., 103, 74-81. https://doi.org/10.1016/j.coldregions.2014.03.007
- Viklander, P. (1998), "Permeability and volume changes in till due to cyclic freeze/thaw", Can. Geotech. J., 35(3), 471-477. https://doi.org/10.1139/t98-015
- Wang, S., Qi, J., Yu, F. and Liu, F. (2016), "A novel modeling of settlement of foundations in permafrost regions", Geomech. Eng., 10(2), 225-245. https://doi.org/10.12989/gae.2016.10.2.225
- Yao, X.L., Qi, J.L. and Ma, W. (2009), "Influence of freeze-thaw on the stored free energy in soils", Cold Reg. Sci. Technol., 56(2-3), 115-119. https://doi.org/10.1016/j.coldregions.2008.11.001
- Ye, W.J., Yang, G.S., Peng, J.B., Huang, Q.B. and Xu, Y.F. (2012), "Test research on mechanism of freezing and thawing cycle resulting in loess slope spalling hazards in luochuan", Chin. J. Rock Mech. Eng., 31(1), 199-205.
- Zhang, Y., Bing, H. and Yang, C.S. (2015), "Influence of freezethaw cycles on mechanical properties of silty clay on SEM and MIP test", Chin. J. Rock Mech. Eng., 34(S1), 3597-3603.
- Zhang, Z., Roman, L.T., Ma, W., Feng, W. and Zhao, S. (2016), "The freeze-thaw cycles-time analogy method for forecasting long-term frozen soil strength", Measure., 92, 483-488.
Cited by
- Experimental Study on Normal Frost-Heave Force Generated from Loess upon Freezing considering Multiple Factors vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/1237105
- Experimental investigation into non-collapsible loess-like soil's engineering geological properties under the influence of freeze–thaw cycles vol.53, pp.4, 2018, https://doi.org/10.1144/qjegh2019-139
- The Influence of Regional Freeze-Thaw Cycles on Loess Landslides: Analysis of Strength Deterioration of Loess with Changes in Pore Structure vol.12, pp.11, 2020, https://doi.org/10.3390/w12113047
- Data-driven framework for predicting ground temperature during ground freezing of a silty deposit vol.26, pp.3, 2018, https://doi.org/10.12989/gae.2021.26.3.235