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TYPE SPACES AND WASSERSTEIN SPACES

Shichang Song

Abstract. Types (over parameters) in the theory of atomless random

variable structures correspond precisely to (conditional) distributions in
probability theory. Moreover, the logic (resp. metric) topology on the type

space corresponds to the topology of weak (resp. strong) convergence of

distributions. In this paper, we study metrics between types. We show
that type spaces under d∗-metric are isometric to Wasserstein spaces.

Using optimal transport theory, two formulas for the metrics between

types are given. Then, we give a new proof of an integral formula for the
Wasserstein distance, and generalize some results in optimal transport

theory.

1. Introduction

Continuous logic is a continuous version of first order logic that has been
developed recently; see [3] and [5] for reference. The set of truth values in
continuous logic is the interval [0, 1] instead of the truth values {True, False}
in classical logic. Continuous logic is better suited for applications to metric
structures than classical first order logic.

In the setting of continuous logic, Ben Yaacov [1] studied the theories of
([0, 1]-valued) random variable structures and their atomless counterparts. He
axiomatized the theory of random variable structures by RV and its atomless
counterpart by ARV. For the theory ARV, Ben Yaacov studied separable cat-
egoricity, type spaces, quantifier elimination, ω-stability, etc in [1]. On type
spaces of ARV, motivated by the work of Berkes and Rosenthal [7], Ben Yaacov,
Berenstein, and Henson [2] studied three different topologies on the space of
types: the logic topology, the metric topology and the canonical base topol-
ogy, in which the last two agree. They showed that types in the theory ARV
correspond to conditional distributions. More specifically, in [2, Theorem 3.3]
(resp. [2, Theorem 6.1]), they showed that the logic (resp. metric) topology on
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the type space corresponds to the topology of weak (resp. strong) convergence
of distributions.

In this paper, following the work of [2], we study type spaces of ARV. In
[2], they studied topologies on type spaces, while we consider metrics on type
spaces. We realize that type spaces of ARV and Wasserstein spaces from opti-
mal transport theory are closely related. We define a metric d∗ between types,
which is equivalent to the usual d-metric between types in continuous logic.
Under d∗, type spaces are isometric to Wasserstein spaces. Our main results
are two formulas for the d-metric and the d∗-metric between types. Theorem
4.5 is for a special case and Theorem 4.10 is for the most general case. Theorem
4.5 generalizes a classical result Theorem 2.6, which gives an integral formula
for the Wasserstein distance between probability measures on the real line. To
prove Theorem 4.10, we use the Kantorovich-Rubinstein duality formula from
optimal transport theory. Then, using model theoretic results and rearrange-
ments of measurable functions, we present a new proof of Theorem 2.6. Finally,
we borrow ideas from model theory to define conditional Wasserstein distances.
Our definition of conditional Wasserstein distances generalizes the definitions
of Wasserstein distances. We apply model theory to prove some results for
conditional Wasserstein spaces.

We assume the reader is familiar with basics of continuous logic. This paper
is organized as follows. Section 2 gives the background and notations from
analysis. We introduce rearrangements and Wasserstein distances in optimal
transport. In Section 3, we present basics of the theory ARV. In Section 4,
we study metrics on type spaces of ARV. Two formulas for the d-metric and
the d∗-metric between types in ARV are given; see Theorems 4.5 and 4.10.
In Section 5, a new proof of an integral formula for the Wasserstein distance
between probability measures on the real line is given. In Section 6, we study
conditional Wasserstein distances.

2. Background from analysis

In this section, we present the background and notations from analysis such
as rearrangements and Wasserstein distances. They are used to prove Theorems
4.5 and 4.10.

2.1. Rearrangements

In this section, we discuss the notion of symmetric rearrangement of a Borel
set and symmetric-decreasing rearrangement of a Borel measurable function.
Then we introduce Lemma 2.2, which will be used to prove Theorem 4.5.

For a Borel subset A ⊆ R of finite Lebesgue measure, A∗ is called the
symmetric rearrangement of the set A if it is the open interval centered at the

origin whose length is the measure of A. Hence, A∗ =
{
x | |x| < λ(A)

2

}
, where

λ is the standard Lebesgue measure on R. For a Borel measurable function
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f : R → R, vanishing at infinity, f∗ is the called the symmetric-decreasing
rearrangement of f if f∗(x) =

∫∞
0
χ{
|f |>t

}∗(x)dt.

Fact 2.1 ([11, Pages 80–81]). (i) f∗(x) is nonnegative.
(ii) f∗(x) is radially symmetric and nonincreasing; i.e., f∗(x) = f∗(y) if
|x| = |y| and f∗(x) ≥ f∗(y) if |x| ≤ |y|.

(iii) f∗(x) is lower semi-continuous.

(iv) For every t > 0,
{
x | f∗(x) > t

}
=
{
x | |f(x)| > t

}∗
. An easy, but

important, consequence of this fact is that dist
(
f∗(x)

)
= dist

(
|f(x)|

)
.

Lemma 2.2 (Nonexpansivity of rearrangement, [11, Theorem 3.5]). Let
J : R → R be a nonnegative convex function such that J(0) = 0. Let f and g
be nonnegative functions on R, vanishing at infinity. Then

(1)

∫
R
J
(
f∗(x)− g∗(x)

)
dx ≤

∫
R
J
(
f(x)− g(x)

)
dx.

If we also assume that J is strictly convex, f = f∗, and f is strictly decreasing,
then equality in (1) implies that g = g∗.

Now we define the rearrangements of Borel functions from [0, 1] to [0, 1],
which will be used to give a new proof of Theorem 2.6 in Section 5.

For a Borel measurable function f : [0, 1] → [0, 1], we define f̃ : R → R as
follows:

f̃(x) =

 f(x) x ∈ [0, 1],
f(−x) x ∈ [−1, 0],
0 otherwise.

Then the symmetric-decreasing rearrangement f̃∗ of f̃ is as follows:

f̃∗(x) =

∫ ∞
0

χ{|f̃ |>t}∗(x)dt =

∫ 1

0

χ{f̃>t}∗(x)dt.

Let f∗(x) be the restriction of f̃∗ on [0, 1]. Then f∗(x) is from [0, 1] to [0, 1].
We call f∗ the decreasing rearrangement of f . By Fact 2.1, we get

f̃∗(x) =

 f∗(x) x ∈ [0, 1],
f∗(−x) x ∈ [−1, 0],
0 otherwise.

Following Fact 2.1, we have the following.

Fact 2.3. Let f be a Borel measurable function from [0, 1] to [0, 1]. Let f∗ be
the decreasing rearrangement of f . Then

(i) f∗(x) is nonincreasing and lower semi-continuous.
(ii) dist

(
f∗(x)

)
= dist

(
f(x)

)
.

Corollary 2.4 (Nonexpansivity of rearrangement). Let J : [0, 1] → [0, 1] be
a nonnegative convex function such that J(0) = 0. Let f, g : [0, 1] → [0, 1] be
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Borel. Then ∫ 1

0

J
(
f∗(x)− g∗(x)

)
dx ≤

∫ 1

0

J
(
f(x)− g(x)

)
dx.

Proof. This follows directly from Lemma 2.2. �

2.2. Wasserstein distances

In this section, we present the necessary background on Wasserstein dis-
tances, which will be used in Section 4. In the rest of this subsection, we will
mostly follow the notions and results in Villani’s book [16, Chapter 6].

Let (X , d) be a Polish metric space, and let p ∈ [1,∞). For probability
measures µ, ν on X , the Wasserstein distance of order p between µ and ν is
defined as follows:

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
X
d(x, y)pdπ(x, y)

)1/p

= inf
{[

Ed(X,Y )p
] 1

p | dist(X) = µ,dist(Y ) = ν
}
,

where Π(µ, ν) denote the collection of all probability measures on X ×X with
marginals µ and ν on the first and second factors respectively.

Let P (X ) be the space of Borel probability measures on X . The Wasserstein
space of order p is defined as

Pp(X ) :=
{
µ | µ ∈ P (X ) and

∫
X
d(x0, x)pµ(dx) < +∞ for some x0 ∈ X

}
.

Throughout this paper, a Wasserstein space is always equipped with a dis-
tance Wp for corresponding p. For p = 1, we have the following formula:

Theorem 2.5 (Kantorovich-Rubinstein duality formula, [16, (6.3)]). Let (X , d)
be a Polish metric space. Then for all µ, ν ∈ P1(X ),

(2) W1(µ, ν) = sup
‖ψ‖Lip≤1

{∫
X
ψdµ−

∫
X
ψdν

}
,

where the Lipschitz norm of a real valued function ψ on X is defined as

‖ψ‖Lip := sup
x 6=y

|ψ(x)− ψ(y)|
d(x, y)

.

The following theorem gives an integral formula for the Wasserstein distance
between probability distributions on the line, which is used in the proof of
Theorem 4.5. Meanwhile, Theorem 4.5 generalizes Theorem 2.6.

Theorem 2.6. For all µ, ν ∈ P1(R), one has

W1(µ, ν) =

∫ +∞

−∞
|F (x)−G(x)|dx,

where F and G are distribution functions for µ and ν respectively.
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Proof. For a proof using the Kantorovich-Rubinstein duality formula, see
Proposition 20.11 in Dudley’s book [9]. �

Remark 2.7. Theorem 2.6 was discovered independently by the following people
at least: Dall’Aglio [8], Vallander [15], Szulga [14]. In Section 5, the author
will revisit this theorem and will give his proof using rearrangements and model
theoretic results; see Theorem 5.2.

Now we discuss convergence in Wasserstein spaces. Let p ∈ [1,∞) and let
(µi)i∈N and µ be in Pp(X ). The notation µi → µ means that µi converges
weakly to µ; i.e.,

∫
X ϕ(x)µi(dx) →

∫
X ϕ(x)µ(dx) for all bounded continuous

functions ϕ : X → R. We say (µi)i∈N converges weakly in Pp(X ) if for some
(and thus every) x0 ∈ X , one has µi → µ and∫

X
d(x0, x)pµi(dx)→

∫
X
d(x0, x)pµ(dx).

Theorem 2.8 ([16, Theorem 6.9]). Let (X , d) be a Polish space and let p ∈
[1,∞). Then the topology defined by the Wasserstein distance Wp is the same
as the topology of weak convergence in Pp(X ). In other words, if (µi)i∈N is a
sequence in Pp(X ) and µ is in Pp(X ), then µi converges weakly in Pp(X ) to µ
if and only if Wp(µi, µ)→ 0.

Remark 2.9. we will see that Theorem 2.8 is a consequence of the separable
categoricity of ARV by the Ryll-Nardzewski Theorem for continuous logic.

3. Basics of the theory ARV

In this section, we summarize basic model theoretic properties of the theory
ARV and results about topologies on type spaces of ARV.

3.1. The theory ARV

Let (Ω,F , µ) be a probability space. It is atomless if for every A ∈ F with
µ(A) > 0, there exists B ∈ F such that B ⊆ A and 0 < µ(B) < µ(A).
Let L1

(
(Ω,F , µ), [0, 1]

)
, or L1(µ, [0, 1]), denote the L1-space of classes of [0, 1]-

valued F-measurable functions equipped with L1-metric. A ([0, 1]-valued) ran-
dom variable structure is based on a set of the form M = L1

(
(Ω,F , µ), [0, 1]

)
,

where (Ω,F , µ) is a probability space. It is called an atomless random vari-
able structure, if its underlying probability space is atomless. We consider
the signature LRV = {0,¬,−· , 1

2 , I}, where 0 is a constant symbol, −· is a bi-

nary function symbol, ¬ and 1
2 are unary function symbols, and I is a unary

predicate symbol. Symbols of LRV in M are interpreted naturally. Then

M =
(
L1
(
(Ω,F , µ), [0, 1]

)
,0,¬,−· , 1

2 , I, d
)

is an LRV-structure. Ben Yaacov

[1] axiomatized the class of all [0, 1]-valued random variable structures as LRV-
structures by the theory RV and its atomless counterpart by the theory ARV.

The following theorem includes basic properties of the theory ARV.
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Theorem 3.1 ([1, Theorem 2.17]). Let M = L1
(
(Ω,F , µ), [0, 1]

)
be a model

of ARV. Then the theory ARV is complete, separably categorical, and admits
quantifier elimination. The universal part of ARV is RV, and ARV is the model
completion of RV. If A ⊆M , then dcl(A) = acl(A) = L1

(
(Ω, σ(A), µ), [0, 1]

)
⊆

M , where σ(A) is the σ-algebra of measurable sets generated by the random
variables in A. Two tuples f and g in Mn have the same type over a set
A ⊆ M if and only if they have the same joint conditional distribution over
σ(A).

3.2. The topologies on type spaces

Here, we introduce the results from [2] that connect the logic (resp. metric)
topology with the topology of weak (resp. strong) convergence. We begin by
defining some notions of convergence of distributions from probability theory,
e.g., weak convergence and strong convergence. We follow the definitions in
[7].

Let (Ω,A ,m) be a probability space. An n-dimensional conditional distribu-
tion over A , denoted by µ, is an L1

(
(Ω,A ,m), [0, 1]

)
-valued Borel probability

measure on Rn. More precisely, it satisfies the following:

• µ(B) ≥ 0 a.s. for all Borel sets B ⊆ Rn.
• µ(Rn) = 1 a.s.
• µ(

⋃∞
i=1Bi) =

∑∞
i=1 µ(Bi) a.s. for all disjoint Borel sets B1, B2, . . . ⊆

Rn.

Let DRn(A ) denote the space of all n-dimensional conditional distributions
over A . For every Borel set B ⊆ Rn, we denote by DB(A ) the space of all n-
dimensional conditional distributions over A which, as measures, are supported
by B. Note that the n-dimensional conditional distributions over ∅ are exactly
the n-dimensional distributions.

Let f be an n-tuple of real-valued random variables. The (joint) conditional
distribution of f over A , denoted by µ = dist(f | A ), is an n-dimensional
conditional distribution over A given by

µ(B) = P(f ∈ B | A ) for all Borel sets B ⊆ Rn.

A sequence (fi)i∈N ⊆ L1
(
(Ω,A ,m), [0, 1]

)
converges weakly to f if for every

g ∈ L∞
(
(Ω,A ,m), [0, 1]

)
, we have E(fig) → E(fg). We say the sequence

(fi)i∈N converges strongly to f if it converges in L1. Let µ and (µi)i∈N be
n-dimensional conditional distributions over A . We say the sequence (µi)i∈N
converges weakly (resp. strongly) to µ if for every x with µ({x}) = 0, we have
µi
(
(−∞, x]

)
converges weakly (resp. strongly) to µ

(
(−∞, x]

)
.

Theorem 3.2 ([2, Theorems 3.3 and 6.1]). Let f be an n-tuple in a model
M of ARV and let A be a subset of M . Let A denote σ(A), the σ-algebra
of measurable sets generated by the random variables in A. Then the joint
conditional distribution dist(f | A ) only depends on tp(f/A). Moreover,
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(i) the mapping

ζ : Sn(A)→ D[0,1]n(A )

tp(f/A) 7→ dist(f | A )

between Sn(A) equipped with the logic topology and D[0,1]n(A ) equipped
with the topology of weak convergence is a homeomorphism.

(ii) We identify Sn(A) with D[0,1]n(A ). Then the metric topology and the
topology of strong convergence of conditional distributions agree.

From now on, because of the above theorem, we use ζ to identify Sn(A), the
set of n-types over A, with D[0,1]n

(
σ(A)

)
, the set of n-dimensional conditional

distributions over σ(A).

4. The metrics on type spaces of ARV

In this section, we study the d-metric and the d∗-metric between types. The
main results are two formulas for the d-metric and the d∗-metric between types.
Theorem 4.5 is for a special case and Theorem 4.10 is for the most general case.
Note that Theorem 4.5 generalizes Theorem 2.6.

First, we show a theorem concerning the relation between type spaces of
ARV and Wasserstein spaces. Fix a signature L for metric structures and an
consistent L-theory T . Let M be a model of T and let A ⊆ M . Denote the
L(A)-structure (M, a)a∈A by MA, and set TA to be the L(A)-theory of MA.

Definition 4.1. For each n ≥ 1, let a = (a1, . . . , an) and b = (b1, . . . , bn) be in
a metric structure Mn, we define d(a, b) to be max1≤i≤n d(ai, bi), and d∗(a, b)
to be

∑n
i=1 d(ai, bi). Let TA be as above and let MA = (M, a)a∈A be any

model of TA in which every type in Sn(TA) is realized. For all p, q ∈ Sn(TA),
we define d(p, q) to be

inf
{

max
1≤i≤n

d(bi, ci) | MA |= p[b1, . . . , bn] and MA |= q[c1, . . . , cn]
}
,

and d∗(p, q) to be

inf
{ n∑
i=1

d(bi, ci) | MA |= p[b1, . . . , bn] and MA |= q[c1, . . . , cn]
}
.

Note that d(a, b) ≤ d∗(a, b) ≤ nd(a, b) and d(p, q) ≤ d∗(p, q) ≤ nd(p, q).
The metric d∗ therefore defines the same topology on type spaces as the usual
metric d. Model theoretic results such as the Ryll-Nardzewski Theorem for
continuous logic only depend on the metric topology on type spaces, so this
d∗-metric is adequate for model theoretic purposes. The reason for us to prefer
d∗-metric is the following:

Theorem 4.2. Let f be an n-tuple in a model M of ARV. Then dist(f) is a
probability measure on [0, 1]n. Moreover, the mapping

ηn : Sn(ARV)→ P1

(
[0, 1]n

)
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tp(f) 7→ dist(f)

is an isometric isomorphism between
(
Sn(ARV), d∗

)
and

(
P1

(
[0, 1]n

)
,W1

)
,

where the metric on which the definition of W1 depends is defined by

d∗[0,1]n(a, b) =

n∑
i=1

|ai − bi| for all a, b ∈ [0, 1]n.

Proof. By Theorem 3.2, we know that ηn is well-defined and bijective. Let f
and g be n-tuples in M .

W1

(
dist(f),dist(g)

)
= inf

{
E
( n∑
i=1

|Xi − Yi|
)

: dist(X) = dist(f),dist(Y ) = dist(g)
}

= inf
{ n∑
i=1

E
(
|Xi − Yi|

)
: dist(X) = dist(f),dist(Y ) = dist(g)

}
= d∗

(
tp(f), tp(g)

)
. �

Corollary 4.3. Let f be an n-tuple in a model M of ARV. Then dist(f) is a
probability measure on [0, 1]n. Moreover, the mapping

ηn : Sn(ARV)→ P1

(
[0, 1]n

)
tp(f) 7→ dist(f)

is bijective and bi-Lipschitz between
(
Sn(ARV), d

)
and

(
P1

(
[0, 1]n

)
,W1

)
, where

the metric on which the definition of W1 depends is defined by

d[0,1]n(a, b) = max
1≤i≤n

|ai − bi| for all a, b ∈ [0, 1]n.

In particular, when n = 1, η1 is an isometry.

Proof. This follows from Theorem 4.2 and the fact that d(p, q) ≤ d∗(p, q) ≤
nd(p, q) for all p, q ∈ Sn(ARV). �

An explicit formula for a special case

Now, we apply model theory to prove Theorem 4.5, which gives an explicit
formula for the d-metric between types for a special case, but still generalizes
the formula in Theorem 2.6. In the proof of it, the following result is required.

Proposition 4.4. Let (Ω,F , µ) be an atomless probability space and let f, g :
Ω→ [0, 1] be random variables. Suppose µ

(
supp(f)

)
≤ µ

(
supp(g)

)
.

(i) There are random variables f̃ , g̃ : Ω→ [0, 1] such that dist(f̃) = dist(f),

dist(g̃) = dist(g), and d(f̃ , g̃) = W1

(
dist(f),dist(g)

)
. Moreover, for

any such random variables f̃ and g̃, one has supp(f̃) ⊆ supp(g̃) up to
a null set.
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(ii) Let A ⊆ B be in F with µ(A) = µ
(
supp(f)

)
and µ(B) = µ

(
supp(g)

)
.

Then there are f ′, g′ : Ω→ [0, 1] satisfying:
• supp(f ′) = A and supp(g′) = B;
• dist(f) = dist(f ′) and dist(g) = dist(g′);
• d(f ′, g′) = W1

(
dist(f ′),dist(g′)

)
.

Proof. (i) By Theorem 3.1, the theory ARV is separably categorical. Hence

there are f̃ , g̃ : Ω→ [0, 1] such that tp(f) = tp(f̃), tp(g) = tp(g̃), and d(f̃ , g̃) =

d(tp(f), tp(g)). Then by Theorem 3.1 and Theorem 4.2, one has that dist(f̃) =

dist(f), dist(g̃) = dist(g), and d(f̃ , g̃) = d∗(f̃ , g̃) = W1

(
dist(f),dist(g)

)
.

Suppose supp(f̃) is not contained in supp(g̃) up to a null set. Let D =

supp(f̃)\supp(g̃), so µ(D) > 0. Since dist(f) = dist(f̃) and dist(g) = dist(g̃),

one has that µ(supp(f̃)) = µ(supp(f)) ≤ µ(supp(g̃)) = µ(supp(g)). Because Ω

is atomless, there is a measurable set C ⊆ supp(g̃)\supp(f̃) such that µ(C) =
µ(D). Let ΩC and ΩD denote the probability spaces (C,F � C, µ̃) and (D,F �
D, µ̃) respectively, where µ̃ = µ

µ(C) = µ
µ(D) . Then f̃ � D ∈ L1(ΩD, [0, 1]). By

Theorem 3.1, the theory ARV is separably categorical, so all types in Sn(ARV )

are realized in any model of ARV. Thus tp(f̃ � D) is realized in L1(ΩC , [0, 1]),

say by h : C → [0, 1]. Then by Theorem 3.1, dist(h) = dist(f̃ � D). We define

f̃ ′ : Ω→ [0, 1] as follows:

f̃ ′(ω) =


h(ω) ω ∈ C,
0 ω ∈ D,
f̃(ω) elsewhere.

Then dist(f̃) = dist(f̃ ′), since µ(C) = µ(D) and dist(h) = dist(f̃ � D). Fur-
thermore,

d(f̃ ′, g̃) =

∫
Ω

|f̃ ′ − g̃|dµ =

∫
Ω\(C∪D)

|f̃ ′ − g̃|dµ+

∫
C

|f̃ ′ − g̃|dµ+

∫
D

|f̃ ′ − g̃|dµ

=

∫
Ω\(C∪D)

|f̃ − g̃|dµ+

∫
C

|h− g̃|dµ+

∫
D

|0− g̃|dµ

<

∫
Ω\(C∪D)

|f̃ − g̃|dµ+

∫
C

(h+ g̃)dµ+ 0

=

∫
Ω\(C∪D)

|f̃ − g̃|dµ+

∫
C

g̃dµ+

∫
D

f̃dµ

=

∫
Ω\(C∪D)

|f̃ − g̃|dµ+

∫
C

|f̃ − g̃|dµ+

∫
D

|f̃ − g̃|dµ

=

∫
Ω

|f̃ − g̃|dµ = d(f̃ , g̃) = W1(dist(f),dist(g)).

By Corollary 4.3, this contradicts the fact that dist(f̃ ′) = dist(f) and dist(g̃) =
dist(g).
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(ii) By (i), there are random variables f̃ , g̃ : Ω → [0, 1] such that dist(f̃) =

dist(f), dist(g̃) = dist(g), and d(f̃ , g̃) = W1

(
dist(f),dist(g)

)
. Moreover, we

have supp(f̃) ⊆ supp(g̃) up to a null set. Let C = supp(f̃), D = supp(g̃), and
assume that C ⊆ D. Then, one has that µ(C) = µ(A) and µ(D) = µ(B). Since
F is atomless, there is an atomless and countably σ-generated σ-subalgebra F0

of F which contains A,B,C,D. Let A = σ(C ∪ D) be the σ-subalgebra σ-
generated by C and D in F0. Then we define ϕ : A → F0 by ϕ(C) = A
and ϕ(D) = B. Since F0 is atomless and countably σ-generated, F0 is a
homogeneous probability algebra. By [10, Corollary 3.19], ϕ extends to an
automorphism Φ of the probability algebra F0. Naturally, Φ induces an LRV-
automorphism of L1

(
(Ω,F0, µ), [0, 1]

)
; we still call it Φ. Let f ′ = Φ(f̃) and

g′ = Φ(g̃). Then dist(f ′) = dist(f̃), dist(g′) = dist(g̃), and d(f ′, g′) = d(f̃ , g̃).
Moreover, supp(f ′) = A and supp(g′) = B. �

Next, for a special case, we prove an explicit formula for the d-metric between
types.

Theorem 4.5. Let κ be an uncountable cardinal. Let M |= ARV be a κ-
universal domain of the form

(
L1(µ, [0, 1]),¬, 1

2 , ·,−· , I
)
, where (Ω,F , µ) is an

atomless probability space. Suppose C ⊆M = L1(µ, [0, 1]) is a small subset; let
C be the σ-algebra of measurable sets generated by the random variables in C.
Let a = (a1, . . . , an) ∈ Mn and b = (b1, . . . , bn) ∈ Mn be disjointly supported;
i.e., they satisfy ai · aj = bi · bj = 0 whenever i 6= j and 1 ≤ i, j ≤ n. Then

(3) d
(
tp(a/C), tp(b/C)

)
= max

1≤i≤n

∫ 1

0

∥∥P(ai > t | C)− P(bi > t | C)
∥∥

1
dt,

where ‖ · ‖1 is the L1-norm.

Proof. Case 1: We first consider the case in which C = ∅. By definition,

d
(
tp(a), tp(b)

)
= inf

{
max

1≤i≤n
I
(
|xi − yi|

)
: x, y ∈M,x |= tp(a), and y |= tp(b)

}
.

Then

d
(
tp(a), tp(b)

)
= inf

{
max

1≤i≤n
I
(
|xi − yi|

)
: x, y ∈M,x |= tp(a), and y |= tp(b)

}
≥ max

1≤i≤n
inf
{
I
(
|xi − yi|

)
: x, y ∈M,x |= tp(a), and y |= tp(b)

}
= max

1≤i≤n

∫ 1

0

∣∣µ(ai > t)− µ(bi > t)
∣∣dt.

So we need only show that

d
(
tp(a), tp(b)

)
≤ max

1≤i≤n

∫ 1

0

∣∣µ(ai > t)− µ(bi > t)
∣∣dt.

Let
(
[0, 1],B, λ

)
be the standard Lebesgue space. Let f := (f1, . . . , fn) and

g := (g1, . . . , gn) whose coordinates are elements of L1
(
λ, [0, 1]

)
, such that

dist(f) = dist(a) and dist(g) = dist(b). Let Ai be the support set for fi and
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Bi for gi, for every i ≤ n. Reordering the indices if necessary, we may assume
that there is l ≤ n such that µ(Ai) ≥ µ(Bi) if and only if i ≤ l. Let A′i be
the closed interval

[∑
j<i µ(Aj),

∑
j≤i µ(Aj)

]
for i ≤ n. For i ≤ l, let B′i :=[∑

j<i µ(Aj),
∑
j<i µ(Aj) + µ(Bi)

]
. Thus, B′i ⊆ A′i for i ≤ l. Since a1, . . . , an

are disjointly supported and the same for b1, . . . , bn, we know that f1, . . . , fn
are disjointly supported and the same for g1, . . . , gn. For each l < i ≤ n, let
B′i be a union of closed intervals satisfying, B′i ⊇ A′i, λ(B′i) = µ(Bi), and B′i
is disjoint from B′j for all j 6= i. For every i ≤ n, by Proposition 4.4 there are
f ′i , g

′
i : [0, 1]→ [0, 1] satisfying the following:

• dist(f ′i) = dist(fi) = dist(ai), dist(g′i) = dist(gi) = dist(bi);
• The support set of f ′i and g′i are A′i and B′i, respectively;
• d(f ′i , g

′
i) = d

(
tp(ai), tp(bi)

)
.

By Corollary 4.3 and Theorem 2.6, we have:

d(f ′i , g
′
i) = d

(
tp(ai), tp(bi)

)
=

∫ 1

0

∣∣µ(ai > t)− µ(bi > t)
∣∣dt.

Let f ′ := (f ′1, . . . , f
′
n) and g′ := (g′1, . . . , g

′
n). Note that dist(f ′) = dist(f) =

dist(a) and dist(g′) = dist(g) = dist(b) by the fact that they are disjointly
supported. By Theorem 3.1, we have tp(f ′) = tp(f) = tp(a) and tp(g′) =
tp(g) = tp(b). Then,

d
(
tp(a), tp(b)

)
≤ max

1≤i≤n
d(f ′i , g

′
i) = max

1≤i≤n

∫ 1

0

∣∣µ(ai > t)− µ(bi > t)
∣∣dt.

Case 2: We next consider the case in which C is finite with atoms C1, . . . , Cm.
Let aij = ai · χCj

and bij = bi · χCj
for every 1 ≤ j ≤ m and every 1 ≤ i ≤ n.

Also for every 1 ≤ j ≤ m, let āj = (a1j , . . . , anj) and b̄j = (b1j , . . . , bnj).
For each 1 ≤ j ≤ m, by Proposition 4.4 there are ā′j = (a′1j , . . . , a

′
nj) and b̄′j =

(b′1j , . . . , b
′
nj), whose coordinates are supported in Cj such that tp(ā′j) = tp(āj),

tp(b̄′j) = tp(b̄j), and d(a′ij , b
′
ij) = W1

(
dist(a′ij),dist(b′ij)

)
for all 1 ≤ i ≤ n.

Then by Corollary 4.3,

d(a′ij , b
′
ij) = d

(
tp(a′ij), tp(b′ij)

)
=

∫ 1

0

|µ(a′ij > t)− µ(b′ij > t)|dt for all i ≤ n.

Let a′i =
∑m
j=1 a

′
ij and b′i =

∑m
j=1 b

′
ij . Let a′ = (a′1, . . . , a

′
n) and b′ = (b′1, . . . , b

′
n).

For each 1 ≤ j ≤ m,

P(ai > t | C) =

m∑
j=1

µ
(
{ai > t} ∩ Cj

)
χCj

µ(Cj)
=

m∑
j=1

µ(aij > t)χCj

µ(Cj)
.

Thus we have dist
(
ai | σ(C)

)
= dist

(
a′i | σ(C)

)
and dist

(
bi | σ(C)

)
= dist

(
b′i |

σ(C)
)
. Then by Theorem 3.1, we have tp(ai/C) = tp(a′i/C) and tp(bi/C) =

tp(b′i/C). By the fact that the coordinates of a, a′, b′, and b are disjointly
supported, we have tp(a/C) = tp(a′/C) and tp(b/C) = tp(b′/C), since dist

(
a |
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σ(C)
)

= dist
(
a′ | σ(C)

)
and dist

(
b | σ(C)

)
= dist

(
b′ | σ(C)

)
. For all 1 ≤ i ≤ n,

we have

d(a′i, b
′
i) =

∫ 1

0

|a′i − b′i|dt =

m∑
j=1

∫
Cj

|a′i − b′i|dt =

m∑
j=1

∫
Cj

|a′ij − b′ij |dt

=

m∑
j=1

∫ 1

0

|a′ij − b′ij |dt =

m∑
j=1

d(a′ij , b
′
ij).

By the fact that d(a′ij , b
′
ij) =

∫ 1

0
|µ(a′ij > t) − µ(b′ij > t)|dt, dist

(
a | σ(C)

)
=

dist
(
a′ | σ(C)

)
and dist

(
b | σ(C)

)
= dist

(
b′ | σ(C)

)
, we have

d(a′i, b
′
i) =

m∑
j=1

d(a′ij , b
′
ij) =

m∑
j=1

∫ 1

0

∣∣µ(a′ij > t)− µ(b′ij > t)
∣∣dt.

Thus,

d(a′i, b
′
i) =

m∑
j=1

∫ 1

0

∣∣µ(aij > t)− µ(bij > t)
∣∣dt.(4)

For all f, g ∈ M with tp(f/C) = tp(a/C) and tp(g/C) = tp(b/C), we have
that for each 1 ≤ i ≤ n,

d(fi, gi) =

m∑
j=1

d(fij , gij) ≥
m∑
j=1

d
(
tp(fij), tp(gij)

)
=

m∑
j=1

∫ 1

0

∣∣µ(fij > t)− µ(gij > t)
∣∣dt

=

m∑
j=1

∫ 1

0

∣∣µ(aij > t)− µ(bij > t)
∣∣dt,

where fij = fi · χCj and gij = gi · χCj . By Equation (4), we have d(f, g) ≥
d(a′, b′), whereby d(a′, b′) = d

(
tp(a/C), tp(b/C)

)
. Then by

P(ai > t | C) =

m∑
j=1

µ(aij > t)χCj

µ(Cj)
,

we have∥∥P(ai > t | C)− P(bi > t | C)
∥∥

1
=

∫
Ω

∣∣∣ m∑
j=1

(
µ(aij > t)− µ(bij > t)

) χCj

µ(Cj)

∣∣∣dµ
=

m∑
j=1

∫
Cj

∣∣µ(aij > t)− µ(bij > t)
∣∣

µ(Cj)
dµ.
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Thus, ∥∥P(ai > t | C)− P(bi > t | C)
∥∥

1
=

m∑
j=1

∣∣µ(aij > t)− µ(bij > t)
∣∣.(5)

By Equations (4) and (5), we have

d(a′i, b
′
i) =

∫ 1

0

∥∥P(ai > t | C)− P(bi > t | C)
∥∥

1
dt,

whereby

d
(
tp(a/C), tp(b/C)

)
= d(a′, b′) = max

1≤i≤n

∫ 1

0

∥∥P(ai > t | C)− P(bi > t | C)
∥∥

1
dt.

Case 3: Finally, suppose C is an infinite σ-algebra. Let {Cj | j ∈ J} be the
family of all finite subalgebras of C. Then C = ∪j∈JCj . Since all measurable
functions are approximated by simple functions, P(ai > t | C) = supj∈J P(ai >
t | Cj) a.s. and P(bi > t | C) = supj∈J P(bi > t | Cj) a.s. for each 1 ≤ i ≤ n.
Further,∥∥P(ai > t | C)− P(bi > t | C)

∥∥
1

= sup
j∈J

∥∥P(ai > t | Cj)− P(bi > t | Cj)
∥∥

1
.

By the compactness theorem, we know that

d
(
tp(a/C), tp(b/C)

)
= sup

j∈J
d
(
tp(a/Cj), tp(b/Cj)

)
.

Thus, by Case 2 we have

d
(
tp(a/C), tp(b/C)

)
= max

1≤i≤n

∫ 1

0

∥∥P(ai > t | C)− P(bi > t | C)
∥∥

1
dt.

�

Remark 4.6. (i) When a and b are just elements in M , Theorem 4.5 yields
the following formula, which generalizes the formula in Theorem 2.6.

d
(
tp(a/C), tp(b/C)

)
=

∫ 1

0

∥∥P(a > t|C)− P(b > t|C)
∥∥

1
dt.

(ii) In Case 3, one has

d
(
tp(a/C), tp(b/C)

)
= sup

j∈J
d
(
tp(a/Cj), tp(b/Cj)

)
holds in general and does not need assumptions on a and b in the
lemma.

(iii) It follows from the proof of Theorem 4.5 that

d∗
(
tp(a/C), tp(b/C)

)
=

n∑
i=1

∫ 1

0

∥∥P(ai > t|C)− P(bi > t|C)
∥∥

1
dt

for all disjointly supported a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Mn.
Indeed, every occurrence of max1≤i≤n in the proof can be replaced by∑n
i=1.
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(iv) In an early draft of [6] with the title Model theory of probability spaces
with an automorphism, Berenstein and Henson gave a similar explicit
formula for the d-metric between types in the theory of atomless prob-
ability spaces. See more about their result at [3, Lemma 16.4].

Question 4.7. We see that by Theorem 4.5, for a, b ∈ Mn, being disjointly
supported is a sufficient condition for Equation (3). Does Equation (3) hold
for a more general class of a, b ∈ Mn? We know that Equation (3) does not
hold for all a, b ∈ Mn, since in general the joint distributions of a and b are
not determined by the individual distributions of their coordinates, while the
right hand side of Equation (3) only depends on the distributions of a and b’s
coordinates.

The most general case

Now, we are about to prove Theorem 4.10, which considers arbitrary n-types
over parameters in ARV. First, we present some results that will be used in
the proof.

Lemma 4.8. Let M |= ARV be of the form M = L1
(
µ, [0, 1]

)
where (Ω,F , µ)

is an atomless probability space, and let C be a subset of M . Let C denote the
σ-algebra of measurable sets generated by the random variables in C. Suppose
C is finite with atoms C1, . . . , Cm. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be
tuples in M . Then

tp(a/C) = tp(b/C)⇔ tp
((
{aij}1≤i≤n,1≤j≤m)

))
= tp

((
{bij}1≤i≤n,1≤j≤m)

))
,

where aij = ai · χCj and bij = bi · χCj for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Proof. We need only show from right to left. For all Borel B ⊆ [0, 1]n, we have

P
(
(a1, . . . , an) ∈ B | C

)
=
µ
(
C1 ∩ {(a1, . . . , an) ∈ B}

)
µ(C1)

χC1 + · · ·+
µ
(
Cn ∩ {(a1, . . . , an) ∈ B}

)
µ(Cn)

χCn

=
µ((a11, . . . , an1) ∈ B)

µ(C1)
χC1

+ · · ·+ µ((a1m, . . . , anm) ∈ B)

µ(Cm)
χCm

=
µ((b11, . . . , bn1) ∈ B)

µ(C1)
χC1 + · · ·+ µ((b1m, . . . , bnm) ∈ B)

µ(Cm)
χCm

=
µ
(
C1 ∩ {(b1, . . . , bn) ∈ B}

)
µ(C1)

χC1 + · · ·+
µ
(
Cn ∩ {(b1, . . . , bn) ∈ B}

)
µ(Cn)

χCn

= P
(
(b1, . . . , bn) ∈ B | C

)
.

Then by Theorem 3.2, we know tp
(
(a1, . . . , an)/C

)
= tp

(
(b1, . . . , bn)/C

)
. �

Proposition 4.9. Let M |= ARV be an ℵ0-universal domain and let C be a
subset of M . Suppose that M = L1

(
µ, [0, 1]

)
, where (Ω,F , µ) is an atomless

probability space. Let C denote the σ-algebra of measurable sets generated by
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all the random variables in C. Suppose that C is finite with atoms C1, . . . , Cm.
For all n-tuples a = (a1, . . . , an) in M , define aij := ai · χCj

for all 1 ≤ i ≤ n
and 1 ≤ j ≤ m. The mn-tuple (a11, . . . , a1m, . . . , an1, . . . , anm) is denoted by(
{aij}1≤i≤n,1≤j≤m

)
. Then the mapping

θC : SARV
n (C)→ Smn(ARV)

tp(a/C) 7→ tp
((
{aij}1≤i≤n,1≤j≤m

))
is isometric from (SARV

n (C), d∗) into (Smn(ARV), d∗).

Proof. By Lemma 4.8, θC is well-defined. We will show that θC is isometric. Let
a = (a1, . . . , an) and b = (b1, . . . , bn) be n-tuples in M . We define aij = ai ·χCj

and bij = bi · χCj
for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since C1, . . . , Cm are the

atoms of C, for all 1 ≤ i ≤ n we have ai = ai1 + · · ·+ aim, bi = bi1 + · · ·+ bim,
and d∗(ai, bi) =

∑m
j=1 d

∗(aij , bij). Then

d∗(a, b) =

n∑
i=1

m∑
j=1

d∗(aij , bij) = d∗
((
{aij}1≤i≤n,1≤j≤m

)
,
(
{bij}1≤i≤n,1≤j≤m

))
.

By Lemma 4.8, we get

d∗
(
tp(a/C), tp(b/C)

)
= d∗

(
tp
(
{aij}1≤i≤n,1≤j≤m), tp

(
{bij}1≤i≤n,1≤j≤m

))
,

whereby

d∗(p, q) = d∗
(
θC(p), θC(q)

)
for all p, q ∈ SARV

n (C). �

Now, we use Theorem 2.5 (the Kantorovich-Rubinstein duality formula) to
give a formula for the d∗-metric between n-types over parameters in the most
general situation.

Theorem 4.10. Let κ be an uncountable cardinal. Let M |= ARV be a κ-
universal domain of the form

(
L1(µ, [0, 1]),¬, 1

2 , ·,−· , I
)
, where (Ω,F , µ) is an

atomless probability space. Suppose C ⊆ M = L1(µ, [0, 1]) is a small subset;
let C be the σ-algebra of measurable sets generated by the random variables
in C. Let {Cj | j ∈ J} be the family of all finite subalgebras of C. Then
C = ∪j∈JCj. For all p, q ∈ Sn(ARVC) and for all j ∈ J , let pj and qj be the
restriction of p and q in Sn(ARVCj ) respectively. Then let νj = ηmn ◦ θCj (pj)
and ξj = ηmn◦θCj (qj), where ηmn and θC are from Theorem 4.2 and Proposition
4.9. Then

d∗(p, q) = sup
j∈J

sup
‖ψ‖Lip≤1

{∫
[0,1]mn

ψdνj −
∫

[0,1]mn

ψdξj

}
,

where ‖ψ‖Lip ≤ 1 means

|ψ(x)− ψ(y)| ≤
mn∑
i=1

|xi − yi|,∀x = (x1, . . . , xmn), y = (y1, . . . , ymn) ∈ [0, 1]mn.
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Proof. Take j ∈ J . By Proposition 4.9, d∗(pj , qj) = d∗
(
θCj (pj), θCj (qj)

)
. By

Theorem 4.2, we have d∗
(
θCj (pj), θCj (qj)

)
= W1

(
ηmn ◦θCj (pj), ηmn ◦θCj (qj)

)
=

W1(νj , ξj). By Theorem 2.5, we have

W1(νj , ξj) = sup
‖ψ‖Lip≤1

{∫
[0,1]mn

ψdνj −
∫

[0,1]mn

ψdξj

}
,

where ‖ψ‖Lip ≤ 1 means |ψ(x)−ψ(y)| ≤
∑mn
i=1 |xi−yi| for all x = (x1, . . . , xmn)

and y = (y1, . . . , ymn) ∈ [0, 1]mn.
Then, by Remark 4.6(ii) we have

d∗(p, q) = sup
j∈J

d∗(pj , qj) = sup
j∈J

sup
‖ψ‖Lip≤1

{∫
[0,1]mn

ψdνj −
∫

[0,1]mn

ψdξj

}
.

�

5. A new proof of an integral formula for the Wasserstein distance

In this section, using rearrangements and model theoretic results, we give
a new proof of Theorem 2.6. First, we need the following lemma, which is
interesting in itself.

Lemma 5.1. Let f, g be simple, nonincreasing, right-continuous functions from
the standard Lebesgue space

(
[0, 1],B, λ

)
to [0, 1]. Then∫ 1

0

∣∣f(x)− g(x)
∣∣dx =

∫ 1

0

∣∣λ(f > t)− λ(g > t)
∣∣dt.

Proof. Let D be the set{
(x, y) | x, y ∈ [0, 1], f(x) ≤ y ≤ g(x) or g(x) ≤ y ≤ f(x)

}
,

and let I(D) be the set

I(D) =
{

(x, y) | x, y ∈ [0, 1], f(x) < y < g(x) or g(x) < y < f(x)
}
.

Since f, g are simple, nonincreasing, right-continuous functions, we know that
I(D) ⊆ D, and there is a set S, which is a finite union of rectangles, such
that I(D) and D are equal to S up to null sets. Therefore, (λ × λ)(D) =
(λ× λ)

(
I(D)

)
. Hence,∫ 1

0

∣∣f(x)− g(x)
∣∣dx = (λ× λ)(D) = (λ× λ)

(
I(D)

)
.

Note that λ (f > s) and λ (g > s) are also simple, nonincreasing, right-
continuous functions. Let D′ be the set{

(s, t) | s, t ∈ [0, 1], λ(f > s) ≤ t ≤ λ(g > s) or λ(g > s) ≤ t ≤ λ(f > s)
}
,

and let I(D′) be the set{
(s, t) | s, t ∈ [0, 1], λ(f > s) < t < λ(g > s) or λ(g > s) < t < λ(f > s)

}
.

Since λ(f > s) and λ(g > s) are simple, nonincreasing, right-continuous func-
tions, we know that I(D′) ⊆ D′, and there is a set S′, which is a finite union of
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rectangles, such that I(D′) and D′ are equal to S′ up to null sets. Therefore,
(λ× λ)(D′) = (λ× λ)

(
I(D′)

)
. Hence∫ 1

0

∣∣λ(f > t)− λ(g > t)
∣∣dt = (λ× λ)(D′) = (λ× λ)

(
I(D′)

)
.

We will show that if (x, y) ∈ I(D), then (y, x) ∈ D′, and if (s, t) ∈ I(D′), then
(t, s) ∈ D.

If (x, y) ∈ I(D), then f(x) < y < g(x) or g(x) < y < f(x). For all u, v ∈
[0, 1] and all simple, nonincreasing, right-continuous functions h : [0, 1]→ [0, 1],
elementary arguments yield the following facts:

(6) λ(h > v) ≤ u if and only if h(u) ≤ v;

(7) λ(h > v) > u if and only if h(u) > v.

Suppose f(x) < y < g(x). Then, by (6), λ(f > y) ≤ x; by (7), λ(g > y) > x.
Hence λ(f > y) ≤ x < λ(g > y), whereby (y, x) ∈ D′. If g(x) < y < f(x), then
by (6), λ(g > y) ≤ x; by (7), λ(f > y) > x. Hence, λ(g > y) ≤ x < λ(f > y),
whereby (y, x) ∈ D′. Therefore, I(D) ⊆ D′.

If (s, t) ∈ I(D′), then λ(f > s) < t < λ(g > s) or λ(g > s) < t < λ(f > s).
Suppose λ(f > s) < t < λ(g > s). By (6), f(t) ≤ s and by (7), g(t) > s.
Hence, f(t) ≤ s < g(t), whereby (t, s) ∈ D. If λ(g > s) < t < λ(f > s),
then by (6), g(t) ≤ s and by (7), f(t) > s. Hence, g(t) ≤ s < f(t), whereby
(t, s) ∈ D. Therefore, I(D′) ⊆ D.

Hence (λ × λ)
(
I(D)

)
≤ (λ × λ)(D′) and (λ × λ)

(
I(D′)

)
≤ (λ × λ)(D).

Since (λ× λ)(D) = (λ× λ)
(
I(D)

)
and (λ× λ)(D′) = (λ× λ)

(
I(D′)

)
, we have

(λ× λ)(D) = (λ× λ)(D′), whereby∫ 1

0

∣∣f(x)− g(x)
∣∣dx =

∫ 1

0

∣∣λ(f > t)− λ(g > t)
∣∣dt.

�

Now we are ready to prove:

Theorem 5.2 (Theorem 2.6 revisited). For all µ, ν ∈ P1(R), one has

(8) W1(µ, ν) =

∫ +∞

−∞
|F (x)−G(x)|dx,

where F and G are distribution functions for µ and ν respectively.

Proof. Case 1: We consider the case in which µ, ν ∈ P1([0, 1]) ⊆ P1(R).
Let ([0, 1],B, λ) be the standard Lebesgue space. Let f, g : [0, 1] → [0, 1] be
measurable functions such that dist(f) = µ and dist(g) = ν. Then by Theorem
4.2, W1(µ, ν) = d(tp(f), tp(g)). By Proposition 4.4, we may further assume

that d(f, g) = d(tp(f), tp(g)) = I
(
|f − g|

)
=
∫ 1

0
|f(x) − g(x)|dx. Let F (t) =

λ(f ≤ t) and G(t) = λ(g ≤ t).
First, suppose f and g are simple functions. We consider the decreasing

rearrangement f∗ of f and the decreasing rearrangement g∗ of g from [0, 1]
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to [0, 1]; for the definition, see Section 2.1. By Fact 2.3, dist(f∗) = dist(f),
dist(g∗) = dist(g), and f∗ and g∗ are nonincreasing and lower semi-continuous.
Because f and g are simple and dist(f) = dist(f∗),dist(g) = dist(g∗), we have
f∗ and g∗ are also simple. Thus, by Fact 2.3 we have that f∗ and g∗ are simple,
nonincreasing and lower semi-continuous, whereby they are right-continuous.
Since J(x) = |x| is a nonnegative convex function with J(0) = 0, by Corollary
2.4 we have∫ 1

0

∣∣f∗(x)− g∗(x)
∣∣dx ≤ ∫ 1

0

∣∣f(x)− g(x)
∣∣dx = d

(
tp(f), tp(g)

)
.

Since dist(f∗) = dist(f) = µ and dist(g∗) = dist(g) = ν, we have W1(µ, ν) ≤
I
(
|f∗ − g∗|

)
, whereby I

(
|f∗ − g∗|

)
= d

(
tp(f), tp(g)

)
= W1(µ, ν). Therefore,

Equation (8) holds by Lemma 5.1.
Second, we consider general [0, 1]-valued random variables f and g. For all

h1, h2 ∈ L1
(
[0, 1], [0, 1]

)
,

W1(dist(h1),dist(h2)) ≤ d(h1, h2) =

∫ 1

0

|h1(x)− h2(x)|dx.

Since the set of simple functions is dense in L1
(
λ, [0, 1]

)
, one has that the set

S = {dist(h) | h : [0, 1]→ [0, 1] is a simple function} is dense in (P1([0, 1]),W1).
In the product space P1([0, 1]) × P1([0, 1]), we consider the maximum metric
induced by W1. Then the set of pairs (µ, ν) satisfying Equation (8) is a closed
subset of P1([0, 1])×P1([0, 1]). We already know that all pairs in S×S satisfy
Equation (8). Then by the fact that S is dense in (P1([0, 1]),W1), we know
that for all µ, ν in P1([0, 1]), Equation (8) holds.

Case 2: We consider the case in which µ, ν ∈ P1([−n, n]) ⊆ P1(R) for some
n ∈ N. We define a function ϕ : R→ R by ϕ(x) = x+n

2n . This function ϕ induces

Φ: P1([−n, n]) → P1([0, 1]) by defining Φ(µ)(A) = µ(ϕ−1(A)), where µ is in
P1([−n, n]) and A is a Lebesgue measurable subset of [0, 1]. Let f and g be any
two random variables with dist(f) = µ and dist(g) = ν. Then dist(ϕ ◦ f) =
dist(Φ(µ)) and dist(ϕ ◦ g) = dist(Φ(ν)). Also ‖f − g‖1 = 2n‖ϕ ◦ f − ϕ ◦ g‖1.
Hence 2nW1(Φ(µ),Φ(ν)) ≤ W1(µ, ν). Similarly, one has 2nW1(Φ(µ),Φ(ν)) ≥
W1(µ, ν), whereby 2nW1(Φ(µ),Φ(ν)) = W1(µ, ν). Let Φ(F ) and Φ(G) denote
the distribution functions for Φ(µ) and Φ(ν) respectively. Then Φ(F )(x) =
Φ(µ)((−∞, x]) = µ(ϕ−1(−∞, x]) = µ((−∞, 2nx−n]) = F (2nx−n) for x ∈ R.
Similarly, Φ(G)(x) = G(2nx− n). Then by substitution, one has∫

R
|F −G|dx = 2n

∫
R
|Φ(F )− Φ(G)|dx.

By Case 1, one has

W1(Φ(µ),Φ(ν)) =

∫
R
|Φ(F )− Φ(G)|dx.

Therefore, Equation (8) holds for µ and ν.
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Case 3: The most general case. Let T denote
⋃
n∈N P1([−n, n]). Then

T is dense in (P1(R),W1). In the product space P1(R) × P1(R), we consider
the maximum metric induced by W1. Then the set of pairs (µ, ν) satisfying
Equation (8) is a closed subset of P1(R) × P1(R). By Case 2, we know that
all pairs in T × T satisfy Equation (8). Then by the fact that T is dense in
(P1(R),W1), we know that for all µ, ν in P1(R), Equation (8) holds. �

6. Conditional Wasserstein distances

By Theorem 3.2, the mapping

ζ : SARV
n (A)→ D[0,1]n(A )

tp(f/A) 7→ dist(f | A )

is a homeomorphism between the type space SARV
n (A) equipped with the logic

topology and the space D[0,1]n(A ) of conditional distributions over A equipped
with the topology of weak convergence. If we consider the d∗-metric on the type
spaces over ∅ in ARV, then by Theorem 4.2, the mapping

ηn : Sn(ARV)→ D[0,1]n

tp(f) 7→ dist(f)

is an isometric isomorphism between the type space
(
Sn(ARV), d∗

)
and the

Wasserstein space (D[0,1]n ,W1). In model theory, types over parameters are as
important as types over ∅, so it is natural and potentially valuable to define a
new distance on D[0,1]n(A ) which generalizes the Wasserstein distance between
distributions, so that ζ becomes an isometric isomorphism. In this subsection,
we will discuss this new metric, called conditional Wasserstein distance, and
define conditional Wasserstein spaces.

Let (Ω,F ,m) be a κ-saturated probability space, where κ is an uncountable
cardinal. Let A be a σ-subalgebra of F that is small with respect to κ. For
a Polish metric space X , an n-dimensional conditional distribution over A on
X , say µ, is an L1

(
(Ω,A ,m), [0, 1]

)
-valued Borel probability measure on X .

More precisely, it satisfies the following:

• µ(B) ≥ 0 a.s. for all Borel sets B ⊆ X .
• µ(X ) = 1 a.s.
• µ(

⋃∞
i=1Bi) =

∑∞
i=1 µ(Bi) a.s. for all disjoint Borel sets B1, B2, . . . ⊆ X .

Every random variable f from Ω to X determines a conditional distribution over
A , denoted by dist(f | A ). It is defined by dist(f | A )(B) := P(f ∈ B | A )
for every Borel set B ⊆ X , where P(· | A ) is the conditional probability. Let
DX (A ) denote the set of all conditional distributions over A on X . For every
Borel set B ⊆ X , we denote by DB(A ) the set of all conditional distributions
over A which, as measures, are supported by B.

Definition 6.1 (Conditional Wasserstein distance). Let (Ω,F ,m) denote a κ-
saturated probability space for an uncountable cardinal κ, and let A denote a
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small σ-subalgebra of F . Let (X , d) be a Polish metric space and let p ∈ [1,∞).
For conditional distributions µ and ν over A on X , we define the conditional
Wasserstein distance of order p over A as follows:

Wp(µ, ν) = inf
{[

Ed(f, g)p
] 1

p | f, g : Ω→ X ,dist(f | A ) = µ,dist(g | A ) = ν
}
.

In the definition, we need Ω to be κ-saturated with κ > |A |. Otherwise, for
some µ ∈ DX (A ), it is possible that no f : Ω→ X satisfies dist(f | A ) = µ. For
example, suppose that (Ω,F ,m) is the standard Lebesgue space ([0, 1],L, λ).
By [13, Proposition 4.1], the separable structure M = L1(λ, [0, 1]) is not ℵ0-
saturated, and there exist f ∈ M and a type p(y) in S1(f) such that it is not
realized in M . By Theorem 3.1, the type p(y) corresponds µ ∈ D[0,1]n

(
σ(f)

)
such that no g ∈M satisfying dist(g | σ(f)) = µ.

Nonetheless, there is an alternative approach to the definition as follows:

Definition 6.2. Let (X , d) be a Polish metric space and let A be a probability
algebra. Let p ∈ [1,∞). For µ, ν ∈ DX (A ), the conditional Wasserstein
distance of order p over A is defined as

Wp(µ, ν) := inf
Ω,f,g

{
[Ed(f, g)p]

1
p
}
,

where the infimum is over all probability spaces (Ω,F , µ) with A ⊆ F and all
random variables f, g : Ω→ X such that dist(f | A ) = µ and dist(g | A ) = ν.

Remark 6.3. These two definitions are equivalent to each other. Let WΩ
p denote

the distance defined in Definition 6.1 and let Wp denote the one defined in
Definition 6.2. Clearly, for all µ, ν ∈ DX (A ), one has Wp(µ, ν) ≤ WΩ

p (µ, ν).

For all ε > 0, by definition there are f, g such that Wp(µ, ν) + ε ≥ [Ed(f, g)p]
1
p .

Since Ω in Definition 6.1 is κ-saturated for some large cardinal κ and A is
small, there are f ′, g′ : Ω → X such that dist

(
(f ′, g′) | A

)
= dist

(
(f, g) |

A
)
. Therefore, dist(f ′ | A ) = dist(f | A ), dist(g′ | A ) = dist(g | A ), and

[Ed(f, g)p]
1
p = [Ed(f ′, g′)p]

1
p . Consequently, Wp(µ, ν) + ε ≥ [Ed(f ′, g′)p]

1
p ≥

WΩ
p (µ, ν). Hence WΩ

p (µ, ν) = Wp(µ, ν).

Definition 6.4 (Conditional Wasserstein space). Let (Ω,F ,m), A , (X , d), p
be as above. For every x ∈ X , let cx denote the constant function from Ω to
X whose value is x. The conditional Wasserstein space of order p over A is
defined as

Pp(X ,A ) :=
{
µ ∈ DX (A ) |Wp

(
µ,dist(cx0

| A )
)
<∞ for some x0 ∈ X

}
.

Suppose X = [0, 1]n with the distance defined by

d((a1, . . . , an), (b1, . . . , bn)) =

n∑
i=1

d(ai, bi)

for all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n. Then Pp([0, 1]n,A ) = D[0,1]n(A ).
Now we connect conditional Wasserstein spaces to types spaces over set of
parameters.
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Theorem 6.5. Let M be a model of ARV of the form L1(µ, [0, 1]), where
(Ω,F , µ) is an atomless probability space. Suppose M is a κ-universal domain
for an uncountable cardinal κ. Let A be a small subset of M and let A = σ(A)
be the σ-algebra of measurable sets generated by the random variables in A. Let
f be an n-tuple in M . Then dist(f | A ) is a conditional distribution over A
on [0, 1]n. Moreover, the mapping

ηAn : Sn(A)→ P1

(
[0, 1]n,A

)
tp(f/A) 7→ dist(f | A )

is an isometric isomorphism between
(
Sn(A), d∗

)
and

(
P1([0, 1]n,A ),W1

)
,

where the metric on which the definition of W1 depends is defined by

d∗[0,1]n(a, b) =

n∑
i=1

|ai − bi| for all a, b ∈ [0, 1]n.

Proof. This follows from the definition of conditional Wasserstein distances and
Theorem 3.2. �

If B ⊆ A , then we define πB : DX (A ) → DX (B) as follows: for all Borel
B ⊆ X , define πB(µ)(B) = E

(
µ(B) | B

)
for all µ ∈ DX (A ).

Proposition 6.6. Let A be a probability algebra and let µ, ν ∈ D[0,1]n(A ).
Then

W1(µ, ν) = sup
B⊆A

{
W1

(
πB(µ), πB(ν)

)
| B is a finite subalgebra of A

}
.

Proof. LetM be a κ-universal domain for ARV with κ > |A |. We assume that
M is of the form L1

(
(Ω,F ,m), [0, 1]

)
where A ⊆ F . By Remark 4.6(ii), for all

f, g ∈Mn, we have

d
(
tp(f/A), tp(g/A)

)
= sup

B⊆A

{
d
(
tp(f/B), tp(g/B)

)
| B is a finite subalgebra of A

}
.

By Theorem 6.5, we have

W1

(
dist(f | A ),dist(g | A )

)
= sup

B⊆A

{
W1

(
dist(f | B),dist(g | B) | B is a finite subalgebra of A

}
.

Hence,

W1

(
dist(f | A ),dist(g | A )

)
= sup

B⊆A

{
W1

(
πB(dist(f | A )), πB(dist(g | A ))

)
| B is finite subalgebra

}
.

Since (Ω,F , µ) is κ-saturated and A is small, for all µ, ν ∈ D[0,1]n(A ), there
are f, g ∈ M such that dist(f | A ) = µ and dist(g | A ) = ν. The rest
follows. �
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Theorem 6.7. Let (Ω,A ,m) be a probability space, where A is countably σ-
generated. Then the topology induced by the conditional Wasserstein distance
W1 on D[0,1]n(A ) is the same as the topology of weak convergence if and only
if (Ω,A ,m) is a discrete probability space.

Proof. Suppose A = σ(f) for some random variable f : Ω → [0, 1]. Then by
[13, Theorem 1.1] and [13, Proposition 3.2], ARV(f) is separably categorical if
and only if f is discrete. Then by the Ryll-Nardzewski Theorem for continuous
logic ([4, Fact 1.14]), we get that on Sn

(
ARV(f)

)
the metric topology and

the logic topology coincide if and only if f is discrete. The rest follows from
Theorem 3.2 and Theorem 6.5. �

Remark 6.8. Comparing the preceding theorem with Theorem 2.8, we see
the difference between conditional Wasserstein spaces over non-atomic A and
Wasserstein spaces.

Theorem 6.9. Let (Ω,A ,m) be a probability space. Suppose that A is σ-
generated by a subset A of L1

(
(Ω,A ,m), [0, 1]

)
. Then the conditional Wasser-

stein space
(
D[0,1]n(A ),W1

)
has density character ≤ |A|+ ℵ0.

Proof. By Theorem 6.5, there is an isometric isomorphism between
(
Sn(A), d∗

)
and

(
D[0,1]n(A ),W1

)
. Since ARV is ω-stable, we have that (Sn(A), d∗) has

density character ≤ |A| + ℵ0. Hence,
(
D[0,1]n(A ),W1

)
has density character

≤ |A|+ ℵ0. �
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