ON GENERAL (α, β)-METRICS WITH ISOTROPIC E-CURVATURE

Mehran Gabrani and Bahman Rezaei

Abstract

General (α, β)-metrics form a rich and important class of Finsler metrics. In this paper, we obtain a differential equation which characterizes a general (α, β)-metric with isotropic E-curvature, under a certain condition. We also solve the equation in a particular case.

1. Introduction

Finsler geometry is just Riemannian geometry without the quadratic restriction on its metrics [3]. For a Finsler metric $F=F(x, y)$, its geodesics curves are given by the system of differential equations $\ddot{c}^{i}+2 G^{i}(c, \dot{c})=0$, where the local functions $G^{i}=G^{i}(x, y)$ are called the spray coefficients. A Finsler metric is called a Berwald metric if G^{i} are quadratic in $y \in T_{x} M$ for any $x \in M$. Taking a trace of Berwald curvature yields E-curvature (mean Berwald curvature). The E-curvature is one of the most important non-Riemannian quantities in Finsler geometry [6]. In [1], Chen and Shen studied the relationship between isotropic E-curvature and relatively isotropic Landsberg curvature on a Douglas manifold. Tayebi, Nankali and Peyghan proved that every m-root Cartan space of E-curvature reduces to weakly Berwald spaces [7].

The special Finsler metrics we are going to investigate are called general (α, β)-metrics which first introduced by C. Yu and H . Zhu in [10]. By definition, a general (α, β)-metric F can be expressed in the following form:

$$
F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right),
$$

where $\alpha:=\sqrt{a_{i j} y^{i} y^{j}}$ is a Riemannian metric, $\beta:=b_{i} y^{i}$ is a 1 -form, $b:=$ $\left\|\beta_{x}\right\|_{\alpha}$ and $\phi\left(b^{2}, s\right)$ is a positive smooth function. It is easy to see that (α, β) metrics compose a special class in general (α, β)-metrics. Another special class is defined by α being an Euclidean metric $|y|$ and β being an inner product $\langle x, y\rangle$. In this case, the general (α, β)-metric F becomes a spherically symmetric

[^0]Finsler metric in the following form

$$
F=|y| \phi\left(|x|^{2}, \frac{\langle x, y\rangle}{|y|}\right)
$$

which is first introduced by S. F. Rutz who studied the spherically symmetric Finsler metrics in 4-dimensional time-space and generalized the classic Birkhoff theorem in general relativity to the Finsler case [5]. Moreover, general (α, β)metrics include part of Bryants metrics [10] and part of fourth root metrics [4]. Randers metrics can be expressed in the following form

$$
F=\frac{\sqrt{\left(1-\bar{b}^{2}\right) \bar{\alpha}^{2}+\bar{\beta}^{2}}}{1-\bar{b}^{2}}+\frac{\bar{\beta}}{1-\bar{b}^{2}},
$$

where $\bar{\alpha}$ is also a Riemannian metric, $\bar{\beta}$ is a 1 -form and $\bar{b}:=\|\bar{\beta}\|_{\bar{\alpha}} . \quad(\bar{\alpha}, \bar{\beta})$ is called the navigation data of the Randers metric F. Tayebi and Rafie-rad showed that if a Randers metric $F=\alpha+\beta$ is an non trivial isotropic Berwald metric, then $\bar{\beta}$ is a conformal 1 -form with respect to $\bar{\alpha}[8]$.

For general (α, β)-metrics, spray coefficients and related geometrical objects have been studied by C. Yu and H. Zhu [10]. C. Yu gave a local characterization of locally dually flat general (α, β)-metrics and construct some useful examples of dually flat general (α, β)-metrics in [9]. Yu and Zhu completely determined classification of general (α, β)-metrics with constant flag curvature under some suitable conditions and construct many new projectively flat Finsler metrics with flag curvature 1,0 and -1 in [11]. Then Zhu characterized general (α, β) metrics with isotropic Berwald-curvature in [12]. Recently, M. Zohrehvand and H. Maleki, have proved that every Landsberg general (α, β)-metric is a Berwald metric, under a certain condition [13].

The goal of this paper is to study the isotropic E-curvature of general (α, β) metrics, where β is a closed and conformal 1 -form, i.e.,

$$
\begin{equation*}
b_{i \mid j}=c a_{i j}, \tag{1}
\end{equation*}
$$

where $c=c(x) \neq 0$ is a scalar function on M and $b_{i \mid j}$ is the covariant derivation of β with respect to α. In fact we prove the following:

Theorem 1.1. Let $F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$ be a general ($\left.\alpha, \beta\right)$-metric on an n-dimensional manifold M. Suppose that β satisfies (1). Then F is of isotropic E curvature if and only if

$$
\begin{equation*}
(n+1)\left(E-s E_{2}\right)+\left(b^{2}-s^{2}\right)\left(H_{2}-s H_{22}\right)=\rho(x)(n+1)\left(\phi-s \phi_{2}\right) \tag{2}
\end{equation*}
$$

where $\rho(x)=\frac{k(x)}{c(x)}$, E and H are defined in (12) and (13), respectively.
In [2], Y. Chen and W. Song investigated projectively flat spherically symmetric Finsler metrics of isotropicE-curvature, which is correct for general (α, β)-metric as follows:

Corollary 1.2. Let $F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$ be a projectively flat general (α, β)-metric with isotropic E-curvature. Suppose that β satisfies (1). Then F is a Randers metric.

2. Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M. Every Finsler metric F induces a spray $G=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i} \frac{\partial}{\partial y^{2}}$. The spray coefficients G^{i} are defined by

$$
G^{i}:=\frac{1}{4} g^{i l}\left\{\left[F^{2}\right]_{x^{k} y^{l}} y^{k}-\left[F^{2}\right]_{x^{l}}\right\},
$$

where $g_{i j}(x, y)=\left[\frac{1}{2} F^{2}\right]_{y^{i} y^{j}}$ and $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$. For a Riemannian metric, the spray coefficients are determined by its Christoffel symbols as $G^{i}(x, y)=$ $\frac{1}{2} \Gamma_{j k}^{i}(x) y^{j} y^{k}$.

For a Finsler metric F with spray coefficients G^{i}, the Berwald curvature $B=B_{j}{ }^{i}{ }_{k l} d x^{j} \otimes d x^{k} \otimes d x^{l} \otimes \frac{\partial}{\partial x^{i}}$ of F is defined by

$$
\begin{equation*}
B_{j}{ }^{i}{ }_{k l}:=\frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}} . \tag{3}
\end{equation*}
$$

F is called a Berwald metric if $B=0$. A Finsler metric F on a manifold M is said to be of isotropic Berwald curvature if its Berwald curvature $B_{j}{ }^{i}{ }_{k l}$ satisfies

$$
\begin{equation*}
B_{j}{ }^{i}{ }_{k l}=\tau(x)\left(F_{y^{j} y^{k}} \delta^{i}{ }_{l}+F_{y^{j} y^{l}} \delta^{i}{ }_{k}+F_{y^{l} y^{k}} \delta^{i}{ }_{l}+F_{y^{j} y^{k} y^{l}} y^{i}\right), \tag{4}
\end{equation*}
$$

where $\tau(x)$ is a scalar function on M. The E-curvature $E=E_{i j} d x^{i} \otimes d x^{j}$ of F is defined by

$$
\begin{equation*}
E_{i j}:=\frac{1}{2} \frac{\partial^{2}}{\partial y^{i} \partial y^{j}}\left(\frac{\partial G^{m}}{\partial y^{m}}\right) . \tag{5}
\end{equation*}
$$

A Finsler metric F is said to have isotropic E-curvature if there is a scalar function $\kappa=\kappa(x)$ on M such that

$$
\begin{equation*}
E=\frac{1}{2}(n+1) \kappa F^{-1} h, \tag{6}
\end{equation*}
$$

where h is a family of bilinear forms $h_{y}=h_{i j} d x^{i} \otimes d x^{j}$, which are defined by $h_{i j}:=F F_{y^{i} y^{j}}$.

In this paper, we use the indices 1 and 2 as the derivation with respect to b^{2} and s, respectively.

Lemma 2.1 ([10]). Let $F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$ be a general (α, β)-metric on an n dimensional manifold M. Then the function F is a regular Finsler metric for any Riemannian metric α and any 1-form β if and only if $\phi\left(b^{2}, s\right)$ is a positive smooth function defined on the domain $|s| \leq b<b_{0}$ for some positive number (maybe infinity) b_{0} satisfying

$$
\begin{equation*}
\phi-s \phi_{2}>0, \quad \phi-s \phi_{2}+\left(b^{2}-s^{2}\right) \phi_{22}>0 \tag{7}
\end{equation*}
$$

when $n \geq 3$ or

$$
\begin{equation*}
\phi-s \phi_{2}+\left(b^{2}-s^{2}\right) \phi_{22}>0, \tag{8}
\end{equation*}
$$

when $n=2$.
Let $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ and $\beta=b_{i}(x) y^{i}$. Denote the coefficients of the covariant derivative of β with respect to α by $b_{i \mid j}$, and let

$$
\begin{gathered}
r_{i j}=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), \quad s_{i j}=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right), \\
r_{00}=r_{i j} y^{i} y^{j}, \quad s^{i}{ }_{0}=a^{i j} s_{j k} y^{k}, r_{i}=b^{j} r_{j i}, \quad s_{i}=b^{j} s_{j i}, \\
r_{0}=r_{i} y^{i}, \quad s_{0}=s_{i} y^{i}, \quad r^{i}=a^{i j} r_{j}, \quad s^{i}=a^{i j} s_{j}, \quad r=b^{i} r_{i},
\end{gathered}
$$

where $\left(a^{i j}\right)=\left(a_{i j}\right)^{-1}$ and $b^{i}:=a^{i j} b_{j}$.
Clearly, β is a closed one-form if and only if $s_{i j}=0$, and it is a conformal 1 -form with respect to α, if and only if $b_{i \mid j}+b_{j \mid i}=c a_{i j}$, where $c=c(x)$ is a nonzero scalar function on M. Thus, we say that β is closed and conformal with respect to α, if $b_{i \mid j}=c a_{i j}$, where $c=c(x)$ is a nonzero scalar function on M.

Lemma 2.2 ([10]). The spray coefficients G^{i} of a general (α, β)-metric $F=$ $\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$ are related to the spray coefficients ${ }^{\alpha} G^{i}$ of α and given by

$$
G^{i}=G_{\alpha}^{i}+\alpha Q s^{i}{ }_{0}+\left\{\Theta\left(-2 \alpha Q s_{0}+r_{00}+2 \alpha^{2} R r\right)+\alpha \Omega\left(r_{0}+s_{0}\right)\right\} \frac{y^{i}}{\alpha}
$$

$$
\begin{equation*}
+\left\{\Psi\left(-2 \alpha Q s_{0}+r_{00}+2 \alpha^{2} R r\right)+\alpha \Pi\left(r_{0}+s_{0}\right)\right\} b^{i}-\alpha^{2} R\left(r^{i}+s^{i}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
Q & =\frac{\phi_{2}}{\phi-s \phi_{2}}, & R & =\frac{\phi_{1}}{\phi-s \phi_{2}}, \\
\Theta & =\frac{\left(\phi-s \phi_{2}\right) \phi_{2}-s \phi \phi_{2}}{2 \phi\left(\phi-s \phi_{2}+\left(b^{2}-s^{2}\right) \phi_{22}\right)}, & \Psi & =\frac{\phi_{22}}{2\left(\phi-s \phi_{2}+\left(b^{2}-s^{2}\right) \phi_{22}\right)}, \\
\Pi & =\frac{\left(\phi-s \phi_{2}\right) \phi_{12}-s \phi_{1} \phi_{22}}{\left(\phi-s \phi_{2}\right)\left(\phi-s \phi_{2}+\left(b^{2}-s^{2}\right) \phi_{22}\right)}, & \Omega=\frac{2 \phi_{1}}{\phi}-\frac{s \phi+\left(b^{2}-s^{2}\right) \phi_{2}}{\phi} \Pi .
\end{array}
$$

By (1), we have

$$
\begin{equation*}
r_{00}=c \alpha^{2}, r_{0}=c \beta, r=c b^{2}, r^{i}=c b^{i}, s^{i}{ }_{0}=0, s_{0}=0, s^{i}=0 . \tag{10}
\end{equation*}
$$

Substituting (10) into (9) yields

$$
\begin{align*}
G^{i} & =G_{\alpha}^{i}+c \alpha\left\{\Theta\left(1+2 R b^{2}\right)+s \Omega\right\} y^{i}+c \alpha^{2}\left\{\Psi\left(1+2 R b^{2}\right)+s \Pi-R\right\} b^{i}, \\
& =G_{\alpha}^{i}+c \alpha E y^{i}+c \alpha^{2} H b^{i}, \tag{11}
\end{align*}
$$

where

$$
\begin{equation*}
E:=\frac{\phi_{2}+2 s \phi_{1}}{2 \phi}-H \frac{s \phi+\left(b^{2}-s^{2}\right) \phi_{2}}{\phi}, \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
H:=\frac{\phi_{22}-2\left(\phi_{1}-s \phi_{12}\right)}{2\left[\phi-s \phi_{2}+\left(b^{2}-s^{2}\right) \phi_{22}\right]} \tag{13}
\end{equation*}
$$

3. E-curvature of general (α, β)-metrics

In this section, we will compute the E-curvature of a general (α, β)-metric.
Proposition 3.1. Let $F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$ be a general (α, β)-metric on an n dimensional manifold M. Suppose that β satisfies (1). Then the E-curvature of F is given by

$$
\begin{align*}
E_{i j}= & \frac{c}{2}\left\{\frac{1}{\alpha}\left[(n+1) E_{22}+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}\right] b_{i} b_{j}\right. \\
& -\frac{s}{\alpha^{2}}\left[(n+1) E_{22}+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}\right]\left(b_{i} y_{j}+b_{j} y_{i}\right) \\
& +\frac{1}{\alpha^{3}}\left[(n+1) s^{2} E_{22}-(n+1)\left(E-s E_{2}\right)+s^{2}\left(b^{2}-s^{2}\right) H_{222}\right. \\
& \left.+\left(3 s^{2}-b^{2}\right)\left(H_{2}-s H_{22}\right)\right] y_{i} y_{j} \\
& \left.+\frac{1}{\alpha}\left[(n+1)\left(E-s E_{2}\right)+\left(b^{2}-s^{2}\right)\left(H_{2}-s H_{22}\right)\right] a_{i j}\right\}, \tag{14}
\end{align*}
$$

where $c=c(x) \neq 0$ is a scalar function on M.
Proof. By (11), we can rewrite the spray coefficients of a general (α, β)-metric as

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+c W^{i} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
W^{i}:=\alpha E y^{i}+\alpha^{2} H b^{i} . \tag{16}
\end{equation*}
$$

Then, from (16), we have

$$
\begin{equation*}
\frac{\partial W^{i}}{\partial y^{j}}=\alpha_{y^{j}} E y^{i}+\alpha E_{2} s_{y^{j}} y^{i}+\alpha E \delta^{i}{ }_{j}+\left[\alpha^{2}\right]_{y^{j}} H b^{i}+\alpha^{2} H_{2} s_{y^{j}} b^{i} . \tag{17}
\end{equation*}
$$

By taking $i=j$ in (17), we have

$$
\begin{align*}
\frac{\partial W^{m}}{\partial y^{m}} & =\alpha_{y^{m}} E y^{m}+\alpha E_{2} s_{y^{m}} y^{m}+\alpha E \delta_{m}^{m}+\left[\alpha^{2}\right]_{y^{m}} H b^{m}+\alpha^{2} H_{2} s_{y^{m}} b^{m} \\
& =\alpha\left[(n+1) E+2 s H+\left(b^{2}-s^{2}\right) H_{2}\right] \tag{18}
\end{align*}
$$

where we have used

$$
\begin{equation*}
\alpha_{y^{i}}=\frac{y_{i}}{\alpha}, \quad s_{y^{i}}=\frac{\alpha b_{i}-s y_{i}}{\alpha^{2}}, \quad\left[\alpha^{2}\right]_{y^{i}}=2 y_{i} \tag{19}
\end{equation*}
$$

By simple calculations, we have

$$
\begin{align*}
\alpha_{y^{i} y^{j}} & =\frac{1}{\alpha}\left(a_{i j}-\frac{y_{i}}{\alpha} \frac{y_{j}}{\alpha}\right) \tag{20}\\
s_{y^{i} y^{j}} & =-\frac{1}{\alpha^{2}}\left[s a_{i j}+\frac{1}{\alpha}\left(b_{i} y_{j}+b_{j} y_{i}\right)-\frac{3 s}{\alpha^{2}} y_{i} y_{j}\right] . \tag{21}
\end{align*}
$$

By using (18), we obtain

$$
\begin{align*}
\frac{\partial}{\partial y^{i}}\left(\frac{\partial W^{m}}{\partial y^{m}}\right)= & (n+1) \alpha_{y^{i}} E+(n+1) \alpha E_{2} s_{y^{i}}+2 \alpha_{y^{i}} s H+2 \alpha s_{y^{i}} H+2 \alpha s H_{2} s_{y^{i}} \\
& +\alpha_{y^{i}}\left(b^{2}-s^{2}\right) H_{2}-2 \alpha s s_{y^{i}} H_{2}+\alpha\left(b^{2}-s^{2}\right) H_{22} s_{y^{i}} \tag{22}
\end{align*}
$$

It follows from (22) that

$$
\begin{align*}
\frac{\partial}{\partial y^{j}} \frac{\partial}{\partial y^{i}}\left(\frac{\partial W^{m}}{\partial y^{m}}\right)= & \alpha\left[(n+1) E_{22}+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}\right] s_{y^{i}} s_{y^{j}} \\
& +\left[(n+1) E_{2}+2 H+\left(b^{2}-s^{2}\right) H_{22}\right]\left(\alpha_{y^{i}} s_{y^{j}}+\alpha_{y^{j}} s_{y^{i}}\right) \\
& +\alpha\left[(n+1) E_{2}+2 H+\left(b^{2}-s^{2}\right) H_{22}\right] s_{y^{i} y^{j}} \\
& +\left[(n+1) E+2 s H+\left(b^{2}-s^{2}\right) H_{2}\right] \alpha_{y^{i} y^{j}} . \tag{23}
\end{align*}
$$

Plugging (19), (20) and (21) into (23) and using Maple program, we obtain

$$
\begin{align*}
\frac{\partial}{\partial y^{j}} \frac{\partial}{\partial y^{i}}\left(\frac{\partial W^{m}}{\partial y^{m}}\right)= & \frac{1}{\alpha}\left[(n+1) E_{22}+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}\right] b_{i} b_{j} \\
& -\frac{s}{\alpha^{2}}\left[(n+1) E_{22}+2\left(H_{2}-s H_{22}\right)\right. \\
& \left.+\left(b^{2}-s^{2}\right) H_{222}\right]\left(b_{i} y_{j}+b_{j} y_{i}\right) \\
& +\frac{1}{\alpha^{3}}\left[(n+1) s^{2} E_{22}-(n+1)\left(E-s E_{2}\right)+s^{2}\left(b^{2}-s^{2}\right) H_{222}\right. \\
& \left.+\left(3 s^{2}-b^{2}\right)\left(H_{2}-s H_{22}\right)\right] y_{i} y_{j} \\
& +\frac{1}{\alpha}\left[(n+1)\left(E-s E_{2}\right)+\left(b^{2}-s^{2}\right)\left(H_{2}-s H_{22}\right)\right] a_{i j} \tag{24}
\end{align*}
$$

$$
\frac{\partial}{\partial y^{j}} \frac{\partial}{\partial y^{i}}\left(\frac{\partial G_{\alpha}^{m}}{\partial y^{m}}\right)=0
$$

By (5), (15), (16), (24) and (25), we obtain (14).

3.1. Proof of Theorem 1.1

For a general (α, β)-metric $F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$, where β is a closed and conformal 1-form, a direct computation yields

$$
\begin{align*}
F_{y^{i}} & =\alpha_{y^{i}} \phi+\alpha \phi_{2} s_{y^{i}} \tag{26}\\
F_{y^{i} y^{j}} & =\alpha_{y^{i} y^{j}} \phi+\left(\alpha_{y^{i}} s_{y^{j}}+\alpha_{y^{j}} s_{y^{i}}\right) \phi_{2}+\alpha \phi_{22} s_{y^{j}} s_{y^{i}}+\alpha \phi_{2} s_{y^{i} y^{j}} .
\end{align*}
$$

Plugging (19), (20) and (21) into (27), we obtain

$$
\begin{align*}
F_{y^{i} y^{j}}= & \frac{1}{\alpha}\left(\phi-s \phi_{2}\right) a_{i j}-\frac{s \phi_{22}}{\alpha^{2}}\left(b_{j} y_{i}+b_{i} y_{j}\right)+\frac{\phi_{22}}{\alpha} b_{i} b_{j} \\
& -\frac{1}{\alpha^{3}}\left(\phi-s \phi_{2}-s^{2} \phi_{22}\right) y_{i} y_{j} . \tag{28}
\end{align*}
$$

From (6), we have

$$
\begin{equation*}
\frac{\partial}{\partial y^{j}} \frac{\partial}{\partial y^{i}}\left(\frac{\partial G^{m}}{\partial y^{m}}\right)=(n+1) k F_{y^{i} y^{j}} \tag{29}
\end{equation*}
$$

Suppose F is of isotropic E-curvature. By (14) and (28), (29), we obtain

$$
\begin{equation*}
\frac{1}{\alpha^{3}}\left(A_{i j} \alpha^{2}+B_{i j} \alpha+C_{i j}\right)=0 \tag{30}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{i j}:= & \left\{(n+1)\left(E_{22}-\rho(x) \phi_{22}\right)+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}\right\} b_{i} b_{j} \\
& +\left\{(n+1)\left[\left(E-s E_{2}\right)-\rho(x)\left(\phi-s \phi_{2}\right)\right]\right. \\
& \left.+\left(b^{2}-s^{2}\right)\left(H_{2}-s H_{22}\right)\right\} a_{i j}, \\
B_{i j}:= & -s\left\{(n+1)\left(E_{22}-\rho(x) \phi_{22}\right)+2\left(H_{2}-s H_{22}\right)\right. \\
& \left.+\left(b^{2}-s^{2}\right) H_{222}\right\}\left(b_{i} y_{j}+b_{j} y_{i}\right), \\
C_{i j}:= & \left\{(n+1)\left[\left(s^{2} E_{22}-E+s E_{2}\right)+\rho(x)\left(\phi-s \phi_{2}-s^{2} \phi_{22}\right)\right]\right. \\
& \left.+s^{2}\left(b^{2}-s^{2}\right) H_{222}+\left(3 s^{2}-b^{2}\right)\left(H_{2}-s H_{22}\right)\right\} y_{i} y_{j} .
\end{aligned}
$$

From (30), we conclude that

$$
\begin{aligned}
& A_{i j} \alpha^{2}+C_{i j}=0 \\
& B_{i j}=0
\end{aligned}
$$

For $s \neq 0$, from $\left(A_{i j} \alpha^{2}+C_{i j}\right) y^{i} y^{j}=0$, we have

$$
\begin{aligned}
& \left\{(n+1)\left(E_{22}-\rho(x) \phi_{22}\right)+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}\right\} \alpha^{4} s^{2} \\
& +\left\{(n+1)\left[\left(E-s E_{2}\right)-\rho(x)\left(\phi-s \phi_{2}\right)\right]+\left(b^{2}-s^{2}\right)\left(H_{2}-s H_{22}\right)\right\} \alpha^{4} \\
& +\left\{(n+1)\left[\left(s^{2} E_{22}-E+s E_{2}\right)+\rho(x)\left(\phi-s \phi_{2}-s^{2} \phi_{22}\right)\right]\right. \\
& \left.+s^{2}\left(b^{2}-s^{2}\right) H_{222}+\left(3 s^{2}-b^{2}\right)\left(H_{2}-s H_{22}\right)\right\} \alpha^{4}=0 .
\end{aligned}
$$

Simplifying this, yields
(31) $2\left[(n+1)\left(E_{22}-\rho(x) \phi_{22}\right)+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}\right] \alpha^{4} s^{2}=0$.

Thus

$$
\begin{equation*}
(n+1)\left(E_{22}-\rho(x) \phi_{22}\right)+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}=0 . \tag{32}
\end{equation*}
$$

On the other hand, from $\left(A_{i j} \alpha^{2}+C_{i j}\right) b^{i} b^{j}=0$, we have

$$
\begin{aligned}
& \left\{(n+1)\left(E_{22}-\rho(x) \phi_{22}\right)+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}\right\} \alpha^{2} b^{4} \\
& +\left\{(n+1)\left[\left(E-s E_{2}\right)-\rho(x)\left(\phi-s \phi_{2}\right)\right]+\left(b^{2}-s^{2}\right)\left(H_{2}-s H_{22}\right)\right\} \alpha^{2} b^{2} \\
& +\left\{(n+1)\left[\left(s^{2} E_{22}-E+s E_{2}\right)+\rho(x)\left(\phi-s \phi_{2}-s^{2} \phi_{22}\right)\right]\right. \\
& \left.+s^{2}\left(b^{2}-s^{2}\right) H_{222}+\left(3 s^{2}-b^{2}\right)\left(H_{2}-s H_{22}\right)\right\} \beta^{2}=0 .
\end{aligned}
$$

By considering (32), one can see that
(33) $\left[(n+1)\left(E-s E_{2}\right)-\rho(x)\left(\phi-s \phi_{2}\right)+\left(b^{2}-s^{2}\right)\left(H_{2}-s H_{22}\right)\right]\left(b^{2} \alpha^{2}-\beta^{2}\right)=0$.

Thus

$$
\begin{equation*}
(n+1)\left(E-s E_{2}\right)-\rho(x)\left(\phi-s \phi_{2}\right)+\left(b^{2}-s^{2}\right)\left(H_{2}-s H_{22}\right)=0 \tag{34}
\end{equation*}
$$

From $B_{i j} y^{i} y^{j}=0$, we have
(35) $2 s\left\{(n+1)\left(E_{22}-\rho(x) \phi_{22}\right)+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}\right\} \alpha^{2} \beta=0$.

Hence, it is easy to see from (35) that

$$
\begin{equation*}
(n+1)\left(E_{22}-\rho(x) \phi_{22}\right)+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222}=0 \tag{36}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& {\left[(n+1)\left(E-s E_{2}\right)-\rho(x)\left(\phi-s \phi_{2}\right)+\left(b^{2}-s^{2}\right)\left(H_{2}-s H_{22}\right)\right]_{2} } \\
= & (n+1)\left(E_{22}-\rho(x) \phi_{22}\right)+2\left(H_{2}-s H_{22}\right)+\left(b^{2}-s^{2}\right) H_{222} .
\end{aligned}
$$

Therefore, (34) implies that (32) and (36) hold. Thus, if a general (α, β)-metric $F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$ is of isotropic E-curvature, then (34) holds. Conversely, if F satisfies (34), then (29) holds, namely F is of isotropic E-curvature.

Corollary 3.2. Let $F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$ be a general (α, β)-metric on an n-dimensional manifold M. Suppose that β satisfies (1). Then F is of vanishing E curvature if and only if

$$
\begin{equation*}
(n+1)\left(E-s E_{2}\right)+\left(b^{2}-s^{2}\right)\left(H_{2}-s H_{22}\right)=0 \tag{37}
\end{equation*}
$$

3.2. Proof of Corollary 1.2

Suppose that a projectively flat general (α, β)-metric $F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$ has isotropic E-curvature and β satisfies (1), then $H=0,(2)$ can be written as:

$$
\begin{equation*}
E-s E_{2}=\rho(x)\left(\phi-s \phi_{2}\right) \tag{38}
\end{equation*}
$$

By solving (38), we get

$$
\begin{equation*}
E=\theta s+\rho(x) \phi \tag{39}
\end{equation*}
$$

where $\theta=\theta\left(b^{2}\right)$ is a scalar function on M. From (12), we know

$$
\begin{equation*}
E=\frac{1}{2 \phi}\left(\phi_{2}+2 s \phi_{1}\right) \tag{40}
\end{equation*}
$$

Thus if the projectively flat general (α, β)-metric $F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$ has isotropic E-curvature, ϕ satisfies

$$
\begin{array}{r}
\frac{1}{2 \phi}\left(\phi_{2}+2 s \phi_{1}\right)=\theta s+\rho(x) \phi \\
\phi_{22}-2\left(\phi_{1}-s \phi_{12}\right)=0 \tag{42}
\end{array}
$$

Differentiating (41) with respect to s, we get

$$
\begin{equation*}
2 \phi_{1}+2 s \phi_{12}+\phi_{22}=2 \phi \theta+2 \phi_{2} \theta s+4 \phi \phi_{2} \rho(x) . \tag{43}
\end{equation*}
$$

Plugging (42) into (43), we know

$$
\begin{equation*}
2 \phi_{1}=\phi \theta+\phi_{2} \theta s+2 \phi \phi_{2} \rho(x) \tag{44}
\end{equation*}
$$

Multiplying (44) by s and subtract with (41), we have

$$
\begin{equation*}
\left(\theta s^{2}+2 \phi \rho(x) s+1\right) \phi_{2}=\phi \theta s+2 \phi^{2} \rho(x) . \tag{45}
\end{equation*}
$$

For a fixed $b^{2},(45)$ is equivalent to the following equation

$$
\begin{equation*}
X d \phi+Y d s=0 \tag{46}
\end{equation*}
$$

where $X=\theta s^{2}+2 \phi \rho(x) s+1$ and $Y=-\phi \theta s-2 \phi^{2} \rho(x)$. By a direct computation,

$$
\begin{equation*}
\frac{\partial X}{\partial s}=2 \theta s+2 \phi \rho(x), \quad \frac{\partial Y}{\partial \phi}=-\theta s-4 \phi \rho(x) \tag{47}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{1}{Y}\left(\frac{\partial X}{\partial s}-\frac{\partial Y}{\partial \phi}\right)=-\frac{3}{\phi} . \tag{48}
\end{equation*}
$$

By (48), the integrating factor $u(\phi)$ of (46) can be easily obtained,

$$
\begin{equation*}
u(\phi)=\frac{1}{\phi^{3}} . \tag{49}
\end{equation*}
$$

Multiplying (46) by $u(\phi)$, yields

$$
\begin{equation*}
\frac{1}{\phi^{3}}\left(\theta s^{2}+2 \phi \rho(x) s+1\right) d \phi-\frac{1}{\phi^{3}}\left(\phi \theta s+2 \phi^{2} \rho(x)\right) d s=0 . \tag{50}
\end{equation*}
$$

So

$$
d\left(\frac{1}{\phi^{2}} \theta s^{2}+\frac{4}{\phi} \rho(x) s+\frac{1}{2 \phi^{2}}\right)=0,
$$

suppose that $\mathcal{X}\left(b^{2}\right)=\frac{1}{\phi^{2}} \theta s^{2}+\frac{4}{\phi} \rho(x) s+\frac{1}{2 \phi^{2}}$, we obtain

$$
\begin{equation*}
\phi^{2} \mathcal{X}\left(b^{2}\right)-4 \phi \rho(x) s-\left(\theta s^{2}+\frac{1}{2}\right)=0 \tag{51}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\phi\left(b^{2}, s\right)=\frac{2 \rho(x) s \pm \sqrt{\left(4 \rho^{2}(x)+\mathcal{X}\left(b^{2}\right) \theta\right) s^{2}+\frac{1}{2} \mathcal{X}\left(b^{2}\right)}}{\mathcal{X}\left(b^{2}\right)} \tag{52}
\end{equation*}
$$

Due to $F \geq 0$, we have

$$
\begin{equation*}
\phi\left(b^{2}, s\right)=\frac{2 \rho(x) s+\sqrt{\left(4 \rho^{2}(x)+\mathcal{X}\left(b^{2}\right) \theta\right) s^{2}+\frac{1}{2} \mathcal{X}\left(b^{2}\right)}}{\mathcal{X}\left(b^{2}\right)} . \tag{53}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
F=\frac{2 \rho(x) \beta+\sqrt{\left(4 \rho^{2}(x)+\mathcal{X}\left(b^{2}\right) \theta\right) \beta^{2}+\frac{1}{2} \mathcal{X}\left(b^{2}\right) \alpha^{2}}}{\mathcal{X}\left(b^{2}\right)} . \tag{54}
\end{equation*}
$$

This means F is a Randers metric. Conversely, if F satisfies (54), then (29) holds, namely $F=\alpha \phi\left(b^{2}, \frac{\beta}{\alpha}\right)$ has isotropic E-curvature. The proof of corollary is completed.

References

[1] X. Chen and Z. Shen, On Douglas metrics, Publ. Math. Debrecen 66 (2005), no. 3-4, 503-512.
[2] Y. Chen and W. Song, Spherically symmetric Finsler metrics with isotropic Ecurvature, J. Math. Res. Appl. 35 (2015), no. 5, 561-567.
[3] S.-S. Chern, Finsler geometry is just Riemannian geometry without the quadratic restriction, Notices Amer. Math. Soc. 43 (1996), no. 9, 959-963.
[4] B. Li and Z. Shen, Projectively flat fourth root Finsler metrics, Canad. Math. Bull. 55 (2012), no. 1, 138-145.
[5] S. F. Rutz, Symmetry in Finsler spaces, in Finsler geometry (Seattle, WA, 1995), 289 300, Contemp. Math., 196, Amer. Math. Soc., Providence, RI, 1995.
[6] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
[7] A. Tayebi, A. Nankali, and E. Peyghan, Some curvature properties of Cartan spaces with mth root metrics, Lith. Math. J. 54 (2014), no. 1, 106-114.
[8] A. Tayebi and M. Rafie-Rad, S-curvature of isotropic Berwald metrics, Sci. China Ser. A 51 (2008), no. 12, 2198-2204.
[9] C. Yu, On dually flat general (α, β)-metrics, Differential Geom. Appl. 40 (2015), 111122.
[10] C. Yu and H. Zhu, On a new class of Finsler metrics, Differential Geom. Appl. 29 (2011), no. 2, 244-254.
[11] , Projectively flat general (α, β)-metrics with constant flag curvature, J. Math. Anal. Appl. 429 (2015), no. 2, 1222-1239.
[12] H. Zhu, On a class of Finsler metrics with isotropic Berwald curvature, Bull. Korean Math. Soc. 54 (2017), no. 2, 399-416.
[13] M. Zohrehvand and H. Maleki, On general (α, β)-metrics of Landsberg type, Int. J. Geom. Methods Mod. Phys. 13 (2016), no. 6, 1650085, 13 pp.

Mehran Gabrani
Faculty of Sciences
Urmia University
Urmia, Iran
Email address: m.gabrani@urmia.ac.ir
Bahman Rezaei
Faculty of Sciences
Urmia University
Urmia, Iran
Email address: b.rezaei@urmia.ac.ir

[^0]: Received April 25, 2017; Revised July 30, 2017; Accepted November 24, 2017.
 2010 Mathematics Subject Classification. Primary 53C60, 53C25.
 Key words and phrases. Finsler metric, general (α, β)-metric, isotropic E-curvature.

