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DENSITY OF THE HOMOTOPY MINIMAL PERIODS OF
MAPS ON INFRA-SOLVMANIFOLDS OF TYPE (R)

JONG BUM LEE AND XUEZHI ZHAO

ABSTRACT. We study the homotopical minimal periods for maps on infra-
solvmanifolds of type (R) using the density of the homotopical minimal
period set in the natural numbers. This extends the result of [10] from
flat manifolds to infra-solvmanifolds of type (R). We give some examples
of maps on infra-solvmanifolds of dimension three for which the corre-
sponding density is positive.

1. Introduction

Let f : X — X be a self-map on a topological space X. We define the
following: The set of periodic points of f with minimal period n

P,(f) = Fix(f") = | Fix(f")
k<n
and the set of homotopy minimal periods of f

HPer(f) = () {n € N| Pu(g) # 0}

g~f

The famous Sarkovs’kii theorem characterizes the dynamics (minimal periods)
of a map of interval [32]. The set of minimal periods of maps on the circle
has been completely described in [2]. This led to a problem of study the set of
homotopy minimal periods of self-maps. Such an invariant gives an information
about rigid dynamics of self-maps. A fundamental question is to determine
if the set HPer(f) of homotopy minimal periods is empty, finite or infinite.
This problem was successfully studied in [18] when the space is a torus of any
dimension, and this was extended in [14] (see also [15,27]) to any nilmanifold,
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and in [12,28] and [19] to the special solvmanifolds modeled on Sol® and Sol{
respectively. When X is the Klein bottle, the same problem was studied in
[13,21,23,30], and when X is an infra-nilmanifold and f is an expanding map,
it was shown in [7,24,26,33] that HPer(f) is co-finite.

It is now natural to seek for more information when HPer(f) becomes in-
finite. When X is a flat manifold, some sufficient conditions on X and f for
HPer(f) to be infinite were found in [10,29]. For this purpose, the following
invariant was considered: The lower density of the homotopy minimal periods
of f is defined to be ([10, Definition 1.1] and [16, Remark 3.1.60])

DI(/) — timjug 0P 0 0.1)
n—o00 n
From the definition, DH(f) € [0,1]. If HPer(f) is either empty or finite, then
DH(f) = 0. So, we are interested in the case when HPer(f) is infinite. If one
picks randomly a natural number, DH(f) is a lower bound for the probability
of choosing number in HPer(f). Thus, the real number DH(f) will bring to us
more information about the periods of given map f when HPer(f) is infinite.

The purpose of this paper is to study the lower density of homotopy minimal
periods of maps infra-solvmanifolds of type (R). This extends the results in [10]
from flat manifolds to infra-solvmanifolds of type (R). We give some examples
of maps on infra-solvimanifolds of dimension three for which the corresponding
density is positive.

2. Infra-solvmanifolds

Let S be a connected and simply connected solvable Lie group. A discrete
subgroup I' of S is a lattice of S if T'\\S is compact, and in this case, we say
that the quotient space T'\S is a special solvmanifold. Let II C Aff(S) be a
torsion-free finite extension of the lattice I' = II NS of S. That is, II fits the
short exact sequence:

1 S Aff(S) —— Aut(S) —— 1
I I I
1 r n —— IIor —— 1

Then IT acts freely on S and the manifold IT\S is called an infra-solvmanifold.
The finite group ® = II/T" is the holonomy group of II or I\ S. Tt sits naturally
in Aut(S). Thus every infra-solvmanifold IT\S is finitely covered by the special
solvmanifold T\S. An infra-solvmanifold IT\S is of type (R) if S is of type
(R) or completely solvable, i.e., if ad X : & — & has only real eigenvalues for
all X in the Lie algebra & of S. It is known that if S is of type (R), then
exp : 6 — S is surjective. The abelian groups R™ and the connected, simply
connected nilpotent Lie groups are of type (R). Hence the flat manifolds and
the infra-nilmanifolds are examples of infra-solvmanifolds of type (R).
We first recall the following:
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Lemma 2.1 ([25, Lemma 2.1]). Let S and S’ be simply connected solvable Lie
groups, and let TI C Aff(S) and II' C Aff(S’) be finite extensions of lattices T =
IINS of S and TV =TI'NS’ of S’, respectively. Then there exist fully invariant
subgroups A C T and A’ C TV of I1 and I’ respectively, which are of finite indez,
so that any homomorphism 6 : 11 — II' restricts to a homomorphism A — A’.

When the infra-solvmanifolds are of type (R), we have the following second
Bieberbach type result.

Theorem 2.2 ([20, Theorem 2.3]). (1) Any continuous map f : II\S —
IT'\S’ between infra-solvmanifolds of type (R) has an affine map (d, D) :
S — S’ as a homotopy lift.

(2) Any continuous map f : T\S — IV\S" between special solvmanifolds of
type (R) has a Lie group homomorphism D : S — S’ as a homotopy
lift.

When f is a homeomorphism, D can be chosen to be invertible.

Let f : II\S — II\S be a self-map on the infra-solvmanifold II\\S of type
(R) with affine homotopy lift (d, D) : S — S. Since HPer(f) is a homotopy
invariant, we may assume that f is induced by the affine map (d, D). The
map f induces a homomorphism ¢ : II — II on the group II of covering
transformations of the covering projection S — II\/S, which is given by

(%) e(a)(d,D) = (d,D)a, Va €1l

For any (a,A) € @, let p(a, A) = (a’,A’); then A’D = DA. Thus the ho-
momorphism ¢ induces a function ¢ : ® — ® given by p(A) = A’ and this
function satisfies p(A)D = DA for all A € &. However, in general, @ is not

necessarily a homomorphism.
Recall further that:

Theorem 2.3 ([11, Theorem 6.1]). Let f : M — M be a self-map on a compact
PL-manifold of dimension > 3. Then f is homotopic to a map g with P,(g) = 0
if and only if NP,(f) =0.

The infra-solvmanifolds of dimension 1 or 2 are the circle, the torus and the
Klein bottle. Theorem 2.3 for dimensions 1 and 2 is verified respectively in
[1], [2] and [13,21,30]. Immediately we have for any self-map f on an infra-
solvmanifold of any dimension,

HPer(f) = {k | NPy(f) # 0}.
Recalling from [17] that
NP,(f) = (number of irreducible essential orbits of
Reidemeister classes of f™) x n,
we have

HPer(f) = {k | 3 an irreducible essential fixed point class of f*}.
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Recall from [6, Propositions 9.1 and 9.3] the following: Let f be a map on an
infra-solvmanifold IT\\S of type (R) induced by an affine map (d,D) : S — S.
For any « € II, Fix(a(d, D)) is an empty set or path connected. Hence every
nonempty fixed point class of f is path connected, and every isolated fixed point
class forms an essential fixed point class with index +det( — A,D,) where
a = (a,A). When the infra-solvmanifold II\\S is of type (R), the converse
also holds. Namely, every essential fixed point class of f consists of a single
element. Remark that (d, D)* induces the map f*. Any fixed point class of f*
is of the form p(Fix(a(d, D)*)) for some o = (a, A) € II. It is essential if and
only if it consists of a single element with index + det(I — A, D¥). Note further
that it is reducible to ¢ if and only if ¢ | k and there exists 8 € II such that
p(Fix(B(d, D)) C p(Fix(a(d, D)¥)), or equivalently, the Reidemeister class
[8] of f* is boosted up to the Reidemeister class [a] of f*. This means that
[a] = [B(B)e*(B)--- "¢ (B)] as the Reidemeister class of f*. For some

v € 11, we thus have a = y(B¢"(8)¢*(8) - - - ©**(8))¢"(7)~'. Hence
a= (18 (M) ML B)* (N - (P B ()T
= 8" (8% (8) - " (B
with 8" = yB8p%(y)~!. Consequently, the fixed point class p(Fix(a(d, D)¥)) is
irreducible if and only if for any 8 € II and for any ¢ < k with ¢ | k,

a(d, D) # (B(d, D)")/*

a# Bt (B)e*(B) - " H(B).

For any endomorphism D on S, we denote the differential of D : S — S by
D, : 6 — &. Now, in conclusion, we can summarize the above observation as
follows:

Theorem 2.4. Let f : TI\S — II\S be a self-map on the infra-solvmanifold
II\S of type (R) with an affine homotopy lift (d,D) : S — S. Let ¢ : Il — II
be the homomorphism induced by (d, D), i.e., p(a)(d,D) = (d, D)a Yo € TI.
Then

Ja = (a, A) € 11 such that det(I — A,D¥) # 0 and
HPer(f) = k‘ VO<kwith|k V3ell,
a(d, D)* # (B(d, D)")k/*
Ja = (a, A) € 1T such that det(I — A,D¥) #0 and
- k:‘ VO<kuwitht|k V5ell
a# B (B)p*(B) - ¢" ()

In order to generalize the results of [10] from flat manifolds to infra-solv-
manifolds of type (R), we need the following observation which is crucial in our
discussion.
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Lemma 2.5. Let A be a lattice of a connected, simply connected solvable Lie
group S of type (R), and let K : S — S be a Lie group homomorphism such
that K(A) C A. For some choice of a linear basis in the Lie algebra & of S,
K, is an upper block triangular matriz with diagonal blocks integer matrices;
in particular det K, is an integer.

Proof. First we assume that S is nilpotent and thus A is a finitely generated
torsion-free nilpotent group. The lower central series of A is defined inductively
via y1(A) = A and ;41 (A) = [A,7:(A)]. The isolator of a subgroup H of A is
defined by

VH ={z e A|z" € H for some k > 1}.
It is known ([31, p. 473], [4, Chap. 1] or [22]) that the sequence

A=A DAy={1(A)D - DAc= V(A DAy =1

forms a central series with A; /A; 41 & ZFi. Now we can choose a generating set

a={a,...,a.}
in such a way that A; is the group generated by A;;1 and a; = {ai1, ..., ain, }-
We refer to a = {ay,...,a.} as a preferred basis of A. Under the diffeomor-

phism log : S — &, the image loga of a is a basis of the vector space &. Note
also that A; = AN+, (.9) is a lattice of v;(S) and a fully invariant subgroup of
A. Since K(A) C A, it follows that K(A;) C A; and the differential of K is
expressed as a rational matrix with respect to the basis loga of the form

K., * *
0 Kc—l* *
0 0 e Ky,

where each square matrix K;, is an integer matrix, see also [24, Lemma 4.2].

Now we go back to the cases where S is solvable of type (R). According
to [34, Remark 8.2], A is a positive polycyclic group and S is its supersolvable
completion. Let N be the maximal connected nilpotent normal subgroup of
S. Then AN N is the nilradical nil(A) of A, which is a lattice of N, see
[34, Proposition 5.1]. Hence we have the following diagram:

1 —— N S S/IN=R® — 1
1 —— nil(A) A A/nil(A) =225 — 1.

By the assumption on K, K restricts to a homomorphism k : A — A. Thus
k and hence K in turn restricts to &’ : nil(A) — nil(A) and then induces a
homomorphism & : Z°* — Z°. We choose a preferred basis of nil(A) under
which K’ : N — N yields a rational matrix K| with diagonal blocks integer
matrices as above. Now we can complete the set of generators of nil(A) to



298 J. B. LEE AND X. ZHAO

a set of generators a = {ay, ai,... ,a.}, called a preferred basis, of A so that
K induces an integer matrix K, and so k induces an upper block triangular
matrix

K, =«

so that all diagonal blocks are integer matrices and hence det K, is an integer.
O

Remark 2.6. Let A be a lattice of a connected, simply connected solvable Lie
group S of type (R). In the proof of the above lemma, we can choose a preferred
basis (generator) a of A so that loga is a (linear) basis of the Lie algebra & of
S and if K is a homomorphism on S such that K(A) C A, then K, is an upper
block triangular matrix with diagonal blocks integer matrices with respect to
the ordered basis loga. We also refer to loga as a preferred basis of A or &.

3. Density of homotopy minimal periods

In this section, we will generalize the main result of [10] from flat manifolds
to infra-solvmanifolds of type (R).

Let f be a self-map on an infra-solvmanifold II\ S of type (R) with holonomy
group ®. Let f have an affine homotopy lift (d, D). Recall that f induces a
homomorphism ¢ : II — II satisfying the identity (x): ¢(a)(d, D) = (d, D)«,
Va € II C S x Aut(S). Let ' =TINS. Tt is not necessarily true that o(T") C T.
Using Lemma 2.1, we can choose a lattice A C T of S so that ¢p(A) C A. Thus
for any A = (A, I) € A, we have p(X) = (¢(A),I) and so

(p(A), )(d, D) = (d, D)(A, ).

Evaluating at the identity 1 of S, we obtain that ¢(A) - d = d- D(X). Conse-
quently, we have that

¢la = p(d)D.

Furthermore, for any (a, A) € II, since I" is a normal subgroup of II, we have
(a, A)(y,I)(a, A)~! € T this implies (u(a)A)(T) C T and (u(a)A)(A) C A.
Consequently, we have homomorphisms p(d)D, pu(a)A : S — S such that
(u(d)D)(A) C A and (u(a)A)(A) C A. We have to notice here that it is not
necessary to have that D(A), A(A) C A. By Remark 2.6, we can choose a pre-
ferred basis a of A so that (u(d)D). = Ad(d)D, and (u(a)A). = Ad(a)A, are
upper block triangular rational matrices with diagonal blocks integer matrices
with respect to the basis loga of &.

In what follows, we shall denote p(d)D and pu(a)A by D and A, respectively.
By Lemma 2.5, the differentials of D and A induce rational matrices with integer
blocks on the diagonal. By considering only integer blocks on the diagonal, we
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obtain integer matrices, denoted by D, and A,. Hence,

De, 0 0
0 Dy, --- 0

D, = | . . . .
0 0 oo Do,

This does not change the determinant and the eigenvalue of the differentials
of D and A. We can call D, and A, linearizations of D, (d,D) or f, and
a = (a,A) € 11, respectively. We denote the free abelian group of all integer
linear combinations of the basis vectors in loga = {loga.,loga._1,...,logag}
by simply Z =2, ® Z._1®---® Zy. Then we have ;. (Z;) C Z;, D(Z) C Z
and A, (2) C Z.

In the following, we provide three lemmas that generalize [10, Lemmas 4.3
and 4.5, Proposition 4.6] from flat manifolds to infra-solvmanifolds of type (R).
These are essential in proving our main results.

Lemma 3.1. Let M = TI\S be an infra-solvmanifold of type (R). Let f be a
self-map on M with an affine homotopy lift (d, D). Assume that

(1) any eigenvalue A of D, of modulus 1 is a root of unity, but not 1;
(2) detD, #0,=+1.

Then there exists a positive integer Ny such that

I — Dk
det - ’ 1
de (1 — D ) g
for all positive integers k and £, provided their prime divisors are all greater
than Ng.

Proof. Let Ay, ..., Ap, be the eigenvalues of D, counted with multiplicities. We
first show that all 1 — A{ are nonzero. In fact, if 1 — A\¢ = 0 for some i, then
)\f =1 and so J; is a primitive £p-th root of unity for some ¢y where 1 < ¢ | £.
Since A; # 1, £y > 1. If p is a prime divisor of £y, then it is a prime divisor of
¢ and so p > Ny. It follows that [Q();) : Q] > p — 1 > m. This contradicts the
fact that [Q();) : Q] is smaller than the size m of D,. Thus I — D is invertible

and (I —D*)/(I =Df) =T +Df +--- + D¢V and

7 — Dk LR Y.
det [ ——% ) = i
(omr) =1

Let Ng > m—+1 and let £ be a positive integer all of whose prime divisors are
greater than Ny. Assume |A;| = 1. By our assumption, A; # 1 and is a root of
unity. The above argument shows that 1 — )\f # 0 and by the same reasoning
1 — AP £ 0; thus (1 — M) /(1 — \f) is nonzero and finite for each such k and
£. Hence we can choose a constant § > 0 such that for all such k£ and /¢

1 — Nkt

Y > 0.
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For \; with |A;| # 1, as Ny — oo, we have

1 when |N\| <1
oo when || > 1.

)\k[
\ ]_|1+V+A” Y

By the assumption that | detD,| > 1, there exists an eigenvalue whose ab-
solute value is bigger than 1. Hence as Ny — oo we have

H ‘ 11_—126‘ e

Consequently, for Ny large enough, the lemma is proved. O

Lemma 3.2. Let M = II\S be an infra-solvmanifold of type (R). Let f be a
self-map on M with an affine homotopy lift (d, D). Assume that

(1) any eigenvalue A of D, of modulus 1 is a root of unity, but not 1;
(2) detD, #0,+1.
Then there exists a positive integer N1 such that
[det(I — D) > > [det(l — DY)
1< |k

for all positive integers k, provided all its positive prime divisors are greater
than N;.

Proof. Let Aq,..., )\, be the eigenvalues of D, counted with multiplicities.
From our assumptions and hence from the observations in the proof of Lemma
3.1, we have:

e Since det D, # 0, all \; are nonzero.
o If |[\;| =1, then )\; # 1 and ); is a root of unity, and 1 — \¥ # 0 for all
k whose prime divisors are > Ny where Ny is a positive integer chosen
in the previous lemma; hence there are constants 0 < §; < o such that
for all \; with |\;| < 1, we have §; < [1 — A\F| < &, for all k with this
property.
For those eigenvalues with |\;| > 1, we claim that there is a sufficiently large k

such that
k ¢

> =A< =AY

1<tk
Suppose on the contrary that for any K > 0 there is kg > K such that

I S S W
1<£ | ko
Then
L-APl< 3 L= AP < rlhko)lL = X2,
1<2 | ko
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where 7(k) is the number of all the divisors of k. Since 7(k) < 2V (see
[16, Exercise 3.2.17]), we have

2v/ko > |14 AF/2| > | ko/2 — 1,

which contradicts the obvious fact that limg_o vk/(|Xi|*/? — 1) = 0.
Therefore we can choose N7 > Ny such that if k is a positive integer whose
prime divisors are > Ny, then

37 Jdet(1 - = 3 (ﬁl—,\f/ﬂ)

1<|k 1<f|k \i=1
<TI{ > n-x7
i=1 \1<(|k
< [T = AF| = | det(T — D). 0
=1

Lemma 3.3. Let M = TI\S be an infra-solvmanifold of type (R). Let f be a
self-map on M with an affine homotopy lift (d, D). Assume that

(1) any eigenvalue A of D, of modulus 1 is a root of unity, but not 1;
(2) detD, #0,+1.
Then there exists a positive integer No such that the equality
z=|J +DL+D¥+.- +DF)(2)
1< | k
is impossible for all positive integers k, provided its positive prime divisors are
all greater than Ns.

Proof. Remark that the proof of Lemma 3.1 shows that there exists a positive
integer Ny such that for all positive integers & whose prime divisors are greater
than Np, I — D! has nonzero determinant if ¢ | k. Since D,(Z) C Z, we have

(I —DF)(2) = (I + DL+ D¥ + - + D)1 - D)(2)
C(I+D{+D¥ +-- + DI )(2)
for all k£ and ¢ with ¢ | k. Thus if we had the equality

z= |J @+Di+D¥+ - +Di7)(2)
0] k1<t<k
we would have
Z/(I-D)(Z) = U T+Di+D¥+--+DE(2) | /(T -DE)(2)
0] kt#1k

U (@+DL+D¥ +-- +DE)(2)/(1 -DE)(2)).
0| k0#1,k
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We remark that Z is a free abelian group and I +D{ +D?2‘ + ... +D¥~* defines
an injective endomorphism of Z. In particular, we have an isomorphism
Z/(I -D3)(2)

= (T4+DE4+D2 - 4 DFHZ/(T+ D8+ D2 - 4 DFH (T - D) (2)

= ([ +DL+D¥ + - +DFHZ/(I-DF)(2).
This would imply

z/u-p)2) = |J (2/t-DH2)
0] kb#£LE
and hence we would have
[det( —DE)[ < Y fdet(I-DE)[ < > [det(Z — D).
0] k£#£1LE 1<t|k

This contradicts Lemma 3.2. O

Now we are ready to state and prove our main results.

Theorem 3.4. Let M = TI\S be an infra-solvmanifold of type (R). Let f be
a self-map on M with an affine homotopy lift (d, D). Let ¢ : II — II be the
homomorphism satisfying

¢(a)(d,D) = (d, D)o, Va ell.
Assume that

(1) any eigenvalue A of D, of modulus 1 is a root of unity, but not 1;
(2) detD, #0,+1;
(3) fix(p: ® — @) = {I}.
Then there exists an integer N with the following property: if k is a positive

integer with prime factorization k = pi* ---pls such that all p;’s are greater
than N, then k € HPer(f).

Proof. Choose an integer N so that N > max{m + 1, Na, order of ¢}. Let
k =pl'---p? be a prime factorization of k such that all p;’s are greater than
N. Then we have to show that k¥ € HPer(f). For this purpose, by Theorem 2.4,
we need to find a = (a, A) € II satisfying:

e det(I — A.DF) #0,

e VU< kwith?|k VBeTl, a(d D)*+#(B(d D)")k/".

We will show that we can choose @ = (a,I) in I' C II. Recall first that the
proof of Lemma 3.1 shows that there exists a positive integer Ny such that
for all positive integers k whose prime divisors are larger than Ny, I — D’ has
nonzero determinant if ¢ | k. Since N > Ny, det(I — D) # 0 for all £ | k.
In particular, det(I — D¥) # 0. By [25, Lemma 3.3] [9, Theorem 1], we have
det(I — DF) = det(I — DY) # 0.
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It remains to prove the second condition. We assume on the contrary that for
any « = (a,I) € T, there exists £ < k with ¢ | k and there exist § = (b, B) € II
such that a(d, D)* = (8(d, D)*)*/¢, which is equivalent to
(1) a =B (B)e*(B) - " (B).

Now we recall that since D is an automorphism, ¢ is the conjugation by
(d,D), ¢o|lr = p(d)D and @ is the conjugation by D. The matrix part (the
holonomy part) of both sides of (1) yields

I =B (B)g*(B) - ¢"~"(B).
Taking @°, we have
I=¢"(B)g*(B) - ¢"~"(B)&"(B).
Hence

¢"(B)"" =B~ = ¢"(B)g*(B)--- " Y(B).

This gives us @*(B) = B. By the choice of k, k must be relatively prime to the
order p of . Choose z,y € Z so that kz + py = 1. Since p = @F*+P¥ = (g¥)?,
it follows that @(B) = B. Since fix(¢p) = {I} by our assumption, we have
B = I. Plugging into (f), we have

a = b (b)¢* (b) - " (0).
Since p|r = u(d)D = D, we have
a = bD*(b)D*(b) - - - D*~4(b)

for some ¢ < k with ¢ | k.
Now we have to show that for any ¢ < k with ¢ | k

{eD*(e)D*(e)-- - DF*(e) | e € T} #T.
Recall in the proof of Lemma 2.5 that I" has a central series
P=Tponl) =12 D> DDl =1

with Fi/Fi—i-l = Zk’ Since ]D(Fz) C Fi, it induces Di : Fi/Fi—i-l — Fi/ri+1.
Note also that

Dc 70 0

0 Doy -+ 0
]D)*: . . . . )

0 0 oo Dy

where I; are integer matrices. Hence some D; satisfies the assumptions (1) and
(2). By Lemma 3.3, we have

{e+Di(e) +D¥@E) +---+DF @) | eeTy/Tiy1} #Ti/Tita.
This proves our assertion. Hence a € ' can be chosen so that
a £ b (D) (b))
for any b € I'. This contradiction proves the second condition. (I
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Corollary 3.5. Let M = TI\S be an infra-solvmanifold of type (R) and let f
be a self-map on M with an affine homotopy lift (d, D). Let ¢ : IT1 — II be the
homomorphism satisfying

o(a)(d,D) = (d,D)a, Va €Il
Assume that

(1) any eigenvalue A of D, of modulus 1 is a root of unity, but not 1;
(2) detD, #0,+1;
(3) fix(p: P — @) ={I}.

Then DH(f) is positive.

Proof. By Theorem 3.4, there exists an integer N with the following property:
for any positive integer k = pi* - - - p= with all p;’s distinct primes and greater
than N, k € HPer(f). Thus

HPer(f) D {k | any prime divisor of k is > N}.

Let g1, ..., q¢ be the all prime numbers which are smaller than or equal to N.
Then the set
{k|k=1 mod q---qe}

is contained in the set on the right-hand side of the above. For, if £ = 1
mod q; - - - ge and if p is a prime divisor of k with p < N, then p = ¢; for some
j; thus ¢; | k and ¢; | K — 1 and hence ¢; = 1, a contradiction.

Furthermore, we have that N! | k — 1 implies ¢ ---qe | kK — 1. This shows
that

HPer(f) D {k| k=1 mod N!}

and the set on the right-hand side has density 1/N!. Consequently,
DH(f) > 1/N! > 0. O

A special solvmanifold is an infra-solvmanifold with the trivial holonomy
group. Hence the third condition of Corollary 3.5 on such a manifold is auto-
matically fulfilled. Immediately we have:

Corollary 3.6. Let f be a self-map on a special solvmanifold M with a Lie
group homomorphism D as a homotopy lift. Assume that

(1) any eigenvalue A of D, of modulus 1 is a root of unity, but not 1;

(2) detD, #0,=+1.
Then DH(f) is positive.

4. Computational results

In this section, we will consider some examples on infra-solvmanifolds up to
dimension three. For infra-solvmanifolds up to dimension 3, there are only three
possibilities for the solvable Lie group G on which the manifold is modeled. It
can be modeled on either the abelian groups R™(n < 3), the 2-step nilpotent
Heisenberg group Nil or the 2-step solvable Lie group Sol.
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We can find a complete description of HPer(f) for maps f on tori in [2]
and [18], and on the Klein bottle in [21]. The remaining infra-solvmanifolds of
dimension 3 are three-dimensional flat manifolds, infra-nilmanifolds on Nil and
infra~solvmanifolds of Sol.

We will give three examples, one from each remaining manifold. For any self-
map f on the manifold IT\G, let ¢ : IT — II be a homomorphism induced by f.
Consider an affine map (d, D) on G satisfying (x). To apply Corollary 3.5, we
have to consider the case where D = u(d)D is invertible. If this is the case, then
(x) says that ¢ is the conjugation by (d, D), that is, p(a) = (d, D)a(d, D)~ 1.
If o = (a,I) €T, then

(o) = (d, D)(a,I)(d,D)~" = (dD(a)d™", ) = (u(d) D(a), ).

Here p(d) is the automorphism on G obtained by conjugating by the element
d € G. Thus p(I") C T and ¢|r = u(d)D = D, and hence @ is the conjugation
by D. In particular ¢ : & — & is an isomorphism.

We start with the following easy observation.

Lemma 4.1. Let ® be a group with presentation
O = (x,y|2®=9* =12y = yx),

and let ¢ be an isomorphism on ®. Then fix(¢p) = 1 if and only if ¢ satisfies
one of the following:

e Y(z) =y, Y(y) = zy
o Y(x) =y, Y(y) =z

4.1. A flat manifold of dimension three

We have a complete classification of three-dimensional Bieberbach groups.
There are six orientable ones and four nonorientable ones, see the book [35,
Theorems 3.5.5 and 3.5.9]. Every group has an explicit representation into
R? x GL(4,Z) (not into R* x O(4)) in this book. Of course one of them is
61 = ZS. Let

1 0 0
€1 = 0 , €2 = 1 , €3 = 0 ’
0 0 1

and let t; = (e;,I) € R® x GL(3,Z). Then t,t5 and t3 generate the subgroup
' of R? x GL(3,Z), which is isomorphic to the group of all integer vectors of
R3.

Let a = (a,A), 8 = (b,B) and v = (¢,C) be elements of R x GL(3,Z),
where

ab:

)

I
O Ol
NI== O

o

I
N0 Do | —
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1 0 0 10 0 -1 00
A=10 -1 o|,B=]| 01 o|,C=]0 -1 0
0 0 -1 00 -1 0 0 1

Then A, B,C have order 2 and AB = C = BA, and
[tzatj] = 17’7605 = tlt?iz L
2 . —_— o —
o =t,atea” " =1t atsa™ " =1
®g = ( t1,ta,t3, 0, 5, I 2 _ 3
: < B OB | g = B = 1, BB =
vyt =ttty =t =t
Thus B¢ fits the short exact sequence
1—T —6;—%—1,
where ® = (A, B) & Zy @ Zs. Every element of B¢ can be written uniquely in
the form o 3™t%?. We first observe the following: Since yBa = tit3, we have
~v = af 'ts, and
akgm when (k,m
a~kpm when (k,m
akg—m when (k,m
(k,m

a~%8~™t; when

Bmak _

and

(a*BmE)? = ok (Bmak)grgl DT

a?k32mi2n when (k,m) = (e, e)
_jpEm when (k,m) = (e, 0)
) o when (k,m) = (o, ¢e)

tan—t when (k,m) = (0, 0)

Let ¢ : &g — B¢ be any homomorphism that induces an isomorphism ¢ on
® satisfying fix(@) = {I}. By Lemma 4.1, we have either @(a) = 3, @(8) = as
or p(a) = ap, p(B) = a.

In general, ¢ has the form

pla) = aM B, o(B) = o™ B 52, p(ty) = o gL
Since v = a8~ '3, a simple calculation shows that

SD(’Y) _ Oékl ﬂ”“ —mo a_k2+k;3 ﬁm3 tz(”fl)k2+k3+m2+m3 (711 7n2)+n3 )

Case p(a) = 3, ¢(8) = ap.
Then k; is even and ko, m1, mo are odd. So, we have
e(7)

Since a? = t1, 82 = to and 72 = t3, a simple calculation shows that
0¥ =t = p(t) = ()’ = (" gm15")* = B2 =15

— ak1—k2+k3ﬂ—m1+m2+m3tgﬂ —na2tns
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B2 =1ty = ¢(ts) = p(B)” = (a™2pm2457) = 1377
")/2 =t3 = k3y = Q(kl 7k2+k3),m3 =0,n3 =0.

Hence o(t3) = afs = tlfs‘/Q, and it follows that ¢(T') C T and so D = ¢|r and
0 0 ks
D* = |m 0 0
0 2no—1 0

Thus detD, = %m1(2n2 — 1) # 0,41 if and only if either k3 # 0 or k3 =
+2my = £1,2n, — 1 = +1. If D, has an eigenvalue of modulus 1, then
det D, = £1. This shows that the condition (2) of Corollary 3.5 implies the
condition (1). Consequently, when ki, k3, m3 are even and ko, mq,ms are odd,
if k3 # 0 or

(k3a my, n2) ¢ {(Qa 1, 0)7 (23 717 O)a (727 17 O)a (727 *17 0)7

(2,1,1),(2,—1,1), (-2,1,1), (=2, —1, 1)},

then DH(f) > 0.
Case ¢(a) = af, ¢(8) = a.
Then kq, ko, my are odd and ms is even. So, we have

90(")/) — akl+k2*k35*m1+m2+m3t;n1+ﬂ2+n3.

Since a? = t1, 8% = t, and 72 = t3, a simple calculation shows that
a? =t = o(t)) = p(a)? = (aF1gm151)? = 2L
B2 =ts = p(ta) = p(B)° = (a*2572152)% = o®M = )%,
’}/2 =t3 = k3 = 0,mz = 2(—m1 + mo —|—m3),n3 =0.

Hence ¢(t3) = g™ = t;na/z, and it follows that ¢(I') C T and so D = ¢|p and

0 ky O
D,=| 0 0 ms
277,1—1 0 0

Hence det D, = ka2 (2n1 — 1) # 0,41 if and only if either m3 # 0 or ky =
+1,m3 = £2,2n7 — 1 = +1. If D, has an eigenvalue of modulus 1, then
det D, = £1. This shows that the condition (2) of Corollary 3.5 implies the
condition (1). Consequently, when ki, ks, my are odd and ks, ms, ms are even,
if ms # 0 or

(k3,m1,n2) ¢ {(17 2,0), (1, _27())7 (—1,2,0),(=1,-2,0),
(1,2,1),(1,-2,1),(-1,2,1),(-1,-2,1)},

then DH(f) > 0.
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4.2. An infra-nilmanifold modeled on Nil

We will consider a three-dimensional infra-nilmanifold modeled on the
Heisenberg group Nil. Recall that

1 = =z
Nil={ [0 1 y ‘a:,y,ze]R
00 1

For all integers k > 0, we consider the subgroups 'y of Nil:

1 m ¢

E
'y = 0 1 n ‘f,m,neZ
0 0 1

These are lattices of Nil and every lattice of Nil is isomorphic to some I'j.
Letting

110 100 10 —¢
s1=10 1 0f,so=1]0 1 1|, s3=1]0 1 0f,
0 0 1 0 0 1 0 0 1
we obtain a presentation of I'y
Ty = (s1, 52,83 | [53,81] = [s3,82] = 1, [s2, 51] = s5).

Every element of I'y, can be written uniquely as the form

1 m

0
0

¢
nm L K
8581 83 = 1 n
0 1
Remark that s7*sy = s5s7s3"™". All possible almost-Bieberbach groups can
be found in [3, pp. 799-801] or [5].

Consider an almost Bieberbach group II given by

II= <81,82753,Oé ’ [83,81_]1:_[83782} - EI[S_Q,SJJ :718]??7 3_ 2 > .
as107 " =83, ST =S] S5, Q° =53
This is a 3-dimensional almost Bieberbach group g 2 or 7 3 with Seifert bundle
type 6.

Let ¢ : IT — II be a homomorphism. Every element of II is of the form
sPssh, shsTsba or s§sTsba?. In order to have an isomorphism @ : & — @
such that fix(p) = {I}, we must have that @(a@) = &2. This implies that ¢ has
the form

o(s1) = shrsTst, p(s2) = 552872582, p(a) = s5°

Then it can be seen as before that

(mgz+1) (ng+1)
(,0(8%) _ (p(a)g _ 8;3E3+2)7%k+(m§+m3n3+n§)k7%k.

Since ¢(s3) € Tk, p(s3) is of the form s§s7's§ and so

s a3l t2,

P(s3) = (st sh)? = 33 hmn,
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1 1

Hence p(s3) = sg. Furthermore, the relations asja™" = sy and assa™ =
sflsg 1 are preserved by . This induces the conditions n; = no = —ms9 and
my = —2my. The relation [sq2,s1] = s§ yields that £ = miny — man; = 3m3.
Consequently, the integral differential of D = ¢|p, with respect to the basis

{log(s1),log(s2),log(ss)} of nil is
—2m2 meo 0

D* = —ma —Mma 0
0 0 3m}

Hence detD, = (3m3)? and the eigenvalues of D, are ¢ and %‘/&mg. No

eigenvalues of D, are of modulus 1, and det D, = 0 (i.e., my = 0) or det D, > 9.
Consequently if mgy # 0 then DH(f) > 0.

4.3. Infra-solvmanifolds modeled on Sol

Next we will consider a closed 3-manifold with Sol-geometry. Recall that
Sol = R? x4 R where

Then Sol is a connected and simply connected unimodular 2-step solvable Lie
group of type (R). It has a faithful representation into Aff(R3) as follows:

t

e 0 0 =z
0 et 0 y

Sol = 0 o0 1 ¢ ‘l’,y,tER
0 0 01

Let M be a closed 3-manifold with Sol-geometry. Then the fundamental
group II of M is a Bieberbach group of Sol, and M = II\Sol. Further, IT can
be embedded into Aff(Sol) = Sol x Aut(Sol) so that there is an exact sequence

1—T —I—II/T—1,

where I' = TI N Sol is a lattice of Sol and ® = II/T is a finite group, called the
holonomy group of II or M, which sits naturally into Aut(Sol), see [8]. The
lattices I' of Sol are determined by 2 x 2-integer matrices A

by lo
A =
{521 522]

of determinant 1 and trace > 2, see for example [29, Lemma 2.1]. Namely,
I'= FA = <CL1,CL2,T | [al,ag] = 1,7'(11"1'71 = A(a1)> = Z2 XA Z

Let f be a self-map on T'4\Sol. By [29, Theorem 2.4], the homomorphism
@ : Ty — T’y induced by f is determined by

pla;) = a™, p(r) = aPr¢
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for some u;,p € Z? and ¢ € Z. Note that ¢ extends uniquely to a Lie group
homomorphism on Sol. Tt follows easily that all the possible (integer) matrices
D, are of the form

D* _ |:111 U2 0:| .

0 0 ¢

We say that ¢ is of type (I) if { = 1; of type (II) if { = —1; of type (III) if
¢ # £1. When ¢ is of type (III), we have ¢(a;) = 1.

Now we consider the conditions of Corollary 3.6. These eliminate ¢ of type
(I) and (III). If @ of type (II) satisfies the conditions of Corollary 3.6, then
DH(f) > 0. In fact, it is shown in [28, Theorem 5.1] that such a map has
HPer(f) = N — 2N, and so DH(f) = 1/2.
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