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DENSITY OF THE HOMOTOPY MINIMAL PERIODS OF

MAPS ON INFRA-SOLVMANIFOLDS OF TYPE (R)

Jong Bum Lee and Xuezhi Zhao

Abstract. We study the homotopical minimal periods for maps on infra-

solvmanifolds of type (R) using the density of the homotopical minimal
period set in the natural numbers. This extends the result of [10] from

flat manifolds to infra-solvmanifolds of type (R). We give some examples
of maps on infra-solvmanifolds of dimension three for which the corre-

sponding density is positive.

1. Introduction

Let f : X → X be a self-map on a topological space X. We define the
following: The set of periodic points of f with minimal period n

Pn(f) = Fix(fn)−
⋃
k<n

Fix(fk)

and the set of homotopy minimal periods of f

HPer(f) =
⋂
g'f

{n ∈ N | Pn(g) 6= ∅} .

The famous Šarkovs’kǐı theorem characterizes the dynamics (minimal periods)
of a map of interval [32]. The set of minimal periods of maps on the circle
has been completely described in [2]. This led to a problem of study the set of
homotopy minimal periods of self-maps. Such an invariant gives an information
about rigid dynamics of self-maps. A fundamental question is to determine
if the set HPer(f) of homotopy minimal periods is empty, finite or infinite.
This problem was successfully studied in [18] when the space is a torus of any
dimension, and this was extended in [14] (see also [15,27]) to any nilmanifold,
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and in [12, 28] and [19] to the special solvmanifolds modeled on Sol3 and Sol41
respectively. When X is the Klein bottle, the same problem was studied in
[13,21,23,30], and when X is an infra-nilmanifold and f is an expanding map,
it was shown in [7, 24,26,33] that HPer(f) is co-finite.

It is now natural to seek for more information when HPer(f) becomes in-
finite. When X is a flat manifold, some sufficient conditions on X and f for
HPer(f) to be infinite were found in [10, 29]. For this purpose, the following
invariant was considered: The lower density of the homotopy minimal periods
of f is defined to be ([10, Definition 1.1] and [16, Remark 3.1.60])

DH(f) = lim inf
n→∞

#(HPer(f) ∩ [0, n])

n
.

From the definition, DH(f) ∈ [0, 1]. If HPer(f) is either empty or finite, then
DH(f) = 0. So, we are interested in the case when HPer(f) is infinite. If one
picks randomly a natural number, DH(f) is a lower bound for the probability
of choosing number in HPer(f). Thus, the real number DH(f) will bring to us
more information about the periods of given map f when HPer(f) is infinite.

The purpose of this paper is to study the lower density of homotopy minimal
periods of maps infra-solvmanifolds of type (R). This extends the results in [10]
from flat manifolds to infra-solvmanifolds of type (R). We give some examples
of maps on infra-solvmanifolds of dimension three for which the corresponding
density is positive.

2. Infra-solvmanifolds

Let S be a connected and simply connected solvable Lie group. A discrete
subgroup Γ of S is a lattice of S if Γ\S is compact, and in this case, we say
that the quotient space Γ\S is a special solvmanifold. Let Π ⊂ Aff(S) be a
torsion-free finite extension of the lattice Γ = Π ∩ S of S. That is, Π fits the
short exact sequence:

1 −−−−→ S −−−−→ Aff(S) −−−−→ Aut(S) −−−−→ 1x x x
1 −−−−→ Γ −−−−→ Π −−−−→ Π/Γ −−−−→ 1.

Then Π acts freely on S and the manifold Π\S is called an infra-solvmanifold.
The finite group Φ = Π/Γ is the holonomy group of Π or Π\S. It sits naturally
in Aut(S). Thus every infra-solvmanifold Π\S is finitely covered by the special
solvmanifold Γ\S. An infra-solvmanifold Π\S is of type (R) if S is of type
(R) or completely solvable, i.e., if adX : S → S has only real eigenvalues for
all X in the Lie algebra S of S. It is known that if S is of type (R), then
exp : S → S is surjective. The abelian groups Rn and the connected, simply
connected nilpotent Lie groups are of type (R). Hence the flat manifolds and
the infra-nilmanifolds are examples of infra-solvmanifolds of type (R).

We first recall the following:
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Lemma 2.1 ([25, Lemma 2.1]). Let S and S′ be simply connected solvable Lie
groups, and let Π ⊂ Aff(S) and Π′ ⊂ Aff(S′) be finite extensions of lattices Γ =
Π∩S of S and Γ′ = Π′∩S′ of S′, respectively. Then there exist fully invariant
subgroups Λ ⊂ Γ and Λ′ ⊂ Γ′ of Π and Π′ respectively, which are of finite index,
so that any homomorphism θ : Π→ Π′ restricts to a homomorphism Λ→ Λ′.

When the infra-solvmanifolds are of type (R), we have the following second
Bieberbach type result.

Theorem 2.2 ([20, Theorem 2.3]). (1) Any continuous map f : Π\S →
Π′\S′ between infra-solvmanifolds of type (R) has an affine map (d,D) :
S → S′ as a homotopy lift.

(2) Any continuous map f : Γ\S → Γ′\S′ between special solvmanifolds of
type (R) has a Lie group homomorphism D : S → S′ as a homotopy
lift.

When f is a homeomorphism, D can be chosen to be invertible.

Let f : Π\S → Π\S be a self-map on the infra-solvmanifold Π\S of type
(R) with affine homotopy lift (d,D) : S → S. Since HPer(f) is a homotopy
invariant, we may assume that f is induced by the affine map (d,D). The
map f induces a homomorphism ϕ : Π → Π on the group Π of covering
transformations of the covering projection S → Π\S, which is given by

ϕ(α)(d,D) = (d,D)α, ∀α ∈ Π.(∗)

For any (a,A) ∈ Φ, let ϕ(a,A) = (a′, A′); then A′D = DA. Thus the ho-
momorphism ϕ induces a function ϕ̄ : Φ → Φ given by ϕ̄(A) = A′ and this
function satisfies ϕ̄(A)D = DA for all A ∈ Φ. However, in general, ϕ̄ is not
necessarily a homomorphism.

Recall further that:

Theorem 2.3 ([11, Theorem 6.1]). Let f : M →M be a self-map on a compact
PL-manifold of dimension ≥ 3. Then f is homotopic to a map g with Pn(g) = ∅
if and only if NPn(f) = 0.

The infra-solvmanifolds of dimension 1 or 2 are the circle, the torus and the
Klein bottle. Theorem 2.3 for dimensions 1 and 2 is verified respectively in
[1], [2] and [13, 21, 30]. Immediately we have for any self-map f on an infra-
solvmanifold of any dimension,

HPer(f) = {k | NPk(f) 6= 0}.

Recalling from [17] that

NPn(f) = (number of irreducible essential orbits of

Reidemeister classes of fn)× n,
we have

HPer(f) = {k | ∃ an irreducible essential fixed point class of fk}.
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Recall from [6, Propositions 9.1 and 9.3] the following: Let f be a map on an
infra-solvmanifold Π\S of type (R) induced by an affine map (d,D) : S → S.
For any α ∈ Π, Fix(α(d,D)) is an empty set or path connected. Hence every
nonempty fixed point class of f is path connected, and every isolated fixed point
class forms an essential fixed point class with index ±det(I − A∗D∗) where
α = (a,A). When the infra-solvmanifold Π\S is of type (R), the converse
also holds. Namely, every essential fixed point class of f consists of a single
element. Remark that (d,D)k induces the map fk. Any fixed point class of fk

is of the form p(Fix(α(d,D)k)) for some α = (a,A) ∈ Π. It is essential if and
only if it consists of a single element with index ±det(I−A∗Dk

∗). Note further
that it is reducible to ` if and only if ` | k and there exists β ∈ Π such that
p(Fix(β(d,D)`)) ⊂ p(Fix(α(d,D)k)), or equivalently, the Reidemeister class
[β] of f ` is boosted up to the Reidemeister class [α] of fk. This means that
[α] = [βϕ`(β)ϕ2`(β) · · ·ϕk−`(β)] as the Reidemeister class of fk. For some
γ ∈ Π, we thus have α = γ(βϕ`(β)ϕ2`(β) · · ·ϕk−`(β))ϕk(γ)−1. Hence

α = (γβϕ`(γ)−1)(ϕ`(γ)ϕ`(β)ϕ2`(γ)−1) · · · (ϕk−`(γ)ϕk−`(β)ϕk(γ)−1)

= β′ϕ`(β′)ϕ2`(β′) · · ·ϕk−`(β′)

with β′ = γβϕ`(γ)−1. Consequently, the fixed point class p(Fix(α(d,D)k)) is
irreducible if and only if for any β ∈ Π and for any ` < k with ` | k,

α(d,D)k 6= (β(d,D)`)k/`

or

α 6= βϕ`(β)ϕ2`(β) · · ·ϕk−`(β).

For any endomorphism D on S, we denote the differential of D : S → S by
D∗ : S→ S. Now, in conclusion, we can summarize the above observation as
follows:

Theorem 2.4. Let f : Π\S → Π\S be a self-map on the infra-solvmanifold
Π\S of type (R) with an affine homotopy lift (d,D) : S → S. Let ϕ : Π → Π
be the homomorphism induced by (d,D), i.e., ϕ(α)(d,D) = (d,D)α ∀α ∈ Π.
Then

HPer(f) =

k ∣∣∣
∃α = (a,A) ∈ Π such that det(I −A∗Dk

∗) 6= 0 and
∀ ` < k with ` | k, ∀ β ∈ Π,

α(d,D)k 6= (β(d,D)`)k/`


=

k ∣∣∣ ∃α = (a,A) ∈ Π such that det(I −A∗Dk
∗) 6= 0 and

∀ ` < k with ` | k, ∀ β ∈ Π,
α 6= βϕ`(β)ϕ2`(β) · · ·ϕk−`(β)

 .

In order to generalize the results of [10] from flat manifolds to infra-solv-
manifolds of type (R), we need the following observation which is crucial in our
discussion.
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Lemma 2.5. Let Λ be a lattice of a connected, simply connected solvable Lie
group S of type (R), and let K : S → S be a Lie group homomorphism such
that K(Λ) ⊂ Λ. For some choice of a linear basis in the Lie algebra S of S,
K∗ is an upper block triangular matrix with diagonal blocks integer matrices;
in particular detK∗ is an integer.

Proof. First we assume that S is nilpotent and thus Λ is a finitely generated
torsion-free nilpotent group. The lower central series of Λ is defined inductively
via γ1(Λ) = Λ and γi+1(Λ) = [Λ, γi(Λ)]. The isolator of a subgroup H of Λ is
defined by

Λ
√
H = {x ∈ Λ | xk ∈ H for some k ≥ 1}.

It is known ([31, p. 473], [4, Chap. 1] or [22]) that the sequence

Λ = Λ1 ⊃ Λ2 = Λ
√
γ2(Λ) ⊃ · · · ⊃ Λc = Λ

√
γc(Λ) ⊃ Λc+1 = 1

forms a central series with Λi/Λi+1
∼= Zki . Now we can choose a generating set

a = {a1, . . . ,ac}
in such a way that Λi is the group generated by Λi+1 and ai = {ai1, . . . , aini

}.
We refer to a = {a1, . . . ,ac} as a preferred basis of Λ. Under the diffeomor-
phism log : S → S, the image log a of a is a basis of the vector space S. Note
also that Λi = Λ ∩ γi(S) is a lattice of γi(S) and a fully invariant subgroup of
Λ. Since K(Λ) ⊂ Λ, it follows that K(Λi) ⊂ Λi and the differential of K is
expressed as a rational matrix with respect to the basis log a of the form

Kc∗ ∗ · · · ∗
0 Kc−1∗ · · · ∗
...

...
. . .

...
0 0 · · · K1∗

 ,
where each square matrix Ki∗ is an integer matrix, see also [24, Lemma 4.2].

Now we go back to the cases where S is solvable of type (R). According
to [34, Remark 8.2], Λ is a positive polycyclic group and S is its supersolvable
completion. Let N be the maximal connected nilpotent normal subgroup of
S. Then Λ ∩ N is the nilradical nil(Λ) of Λ, which is a lattice of N , see
[34, Proposition 5.1]. Hence we have the following diagram:

1 −−−−→ N −−−−→ S −−−−→ S/N ∼= Rs −−−−→ 1x x x
1 −−−−→ nil(Λ) −−−−→ Λ −−−−→ Λ/nil(Λ) ∼= Zs −−−−→ 1.

By the assumption on K, K restricts to a homomorphism κ : Λ → Λ. Thus
κ and hence K in turn restricts to κ′ : nil(Λ) → nil(Λ) and then induces a
homomorphism κ̄ : Zs → Zs. We choose a preferred basis of nil(Λ) under
which K ′ : N → N yields a rational matrix K ′∗ with diagonal blocks integer
matrices as above. Now we can complete the set of generators of nil(Λ) to
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a set of generators a = {a0,a1, . . . ,ac}, called a preferred basis, of Λ so that
κ̄ induces an integer matrix K̄∗ and so κ induces an upper block triangular
matrix

K∗ =

[
K ′∗ ∗
0 K̄∗

]
so that all diagonal blocks are integer matrices and hence detK∗ is an integer.

�

Remark 2.6. Let Λ be a lattice of a connected, simply connected solvable Lie
group S of type (R). In the proof of the above lemma, we can choose a preferred
basis (generator) a of Λ so that log a is a (linear) basis of the Lie algebra S of
S and if K is a homomorphism on S such that K(Λ) ⊂ Λ, then K∗ is an upper
block triangular matrix with diagonal blocks integer matrices with respect to
the ordered basis log a. We also refer to log a as a preferred basis of Λ or S.

3. Density of homotopy minimal periods

In this section, we will generalize the main result of [10] from flat manifolds
to infra-solvmanifolds of type (R).

Let f be a self-map on an infra-solvmanifold Π\S of type (R) with holonomy
group Φ. Let f have an affine homotopy lift (d,D). Recall that f induces a
homomorphism ϕ : Π → Π satisfying the identity (∗): ϕ(α)(d,D) = (d,D)α,
∀α ∈ Π ⊂ SoAut(S). Let Γ = Π∩S. It is not necessarily true that ϕ(Γ) ⊂ Γ.
Using Lemma 2.1, we can choose a lattice Λ ⊂ Γ of S so that ϕ(Λ) ⊂ Λ. Thus
for any λ = (λ, I) ∈ Λ, we have ϕ(λ) = (ϕ(λ), I) and so

(ϕ(λ), I)(d,D) = (d,D)(λ, I).

Evaluating at the identity 1 of S, we obtain that ϕ(λ) · d = d ·D(λ). Conse-
quently, we have that

ϕ|Λ = µ(d)D.

Furthermore, for any (a,A) ∈ Π, since Γ is a normal subgroup of Π, we have
(a,A)(γ, I)(a,A)−1 ∈ Γ; this implies (µ(a)A)(Γ) ⊂ Γ and (µ(a)A)(Λ) ⊂ Λ.
Consequently, we have homomorphisms µ(d)D,µ(a)A : S → S such that
(µ(d)D)(Λ) ⊂ Λ and (µ(a)A)(Λ) ⊂ Λ. We have to notice here that it is not
necessary to have that D(Λ), A(Λ) ⊂ Λ. By Remark 2.6, we can choose a pre-
ferred basis a of Λ so that (µ(d)D)∗ = Ad(d)D∗ and (µ(a)A)∗ = Ad(a)A∗ are
upper block triangular rational matrices with diagonal blocks integer matrices
with respect to the basis log a of S.

In what follows, we shall denote µ(d)D and µ(a)A by D and A, respectively.
By Lemma 2.5, the differentials of D and A induce rational matrices with integer
blocks on the diagonal. By considering only integer blocks on the diagonal, we
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obtain integer matrices, denoted by D∗ and A∗. Hence,

D∗ =


Dc∗ 0 · · · 0
0 Dc−1∗ · · · 0
...

...
. . .

...
0 0 · · · D0∗

 .
This does not change the determinant and the eigenvalue of the differentials
of D and A. We can call D∗ and A∗ linearizations of D, (d,D) or f , and
α = (a,A) ∈ Π, respectively. We denote the free abelian group of all integer
linear combinations of the basis vectors in log a = {log ac, log ac−1, . . . , log a0}
by simply Z = Zc ⊕Zc−1 ⊕ · · · ⊕ Z0. Then we have Di∗(Zi) ⊂ Zi, D∗(Z) ⊂ Z
and A∗(Z) ⊂ Z.

In the following, we provide three lemmas that generalize [10, Lemmas 4.3
and 4.5, Proposition 4.6] from flat manifolds to infra-solvmanifolds of type (R).
These are essential in proving our main results.

Lemma 3.1. Let M = Π\S be an infra-solvmanifold of type (R). Let f be a
self-map on M with an affine homotopy lift (d,D). Assume that

(1) any eigenvalue λ of D∗ of modulus 1 is a root of unity, but not 1;
(2) detD∗ 6= 0,±1.

Then there exists a positive integer N0 such that∣∣∣det

(
I − Dk`∗
I − D`∗

) ∣∣∣ > 1

for all positive integers k and `, provided their prime divisors are all greater
than N0.

Proof. Let λ1, . . . , λm be the eigenvalues of D∗ counted with multiplicities. We
first show that all 1 − λ`i are nonzero. In fact, if 1 − λ`i = 0 for some i, then
λ`i = 1 and so λi is a primitive `0-th root of unity for some `0 where 1 ≤ `0 | `.
Since λi 6= 1, `0 > 1. If p is a prime divisor of `0, then it is a prime divisor of
` and so p > N0. It follows that [Q(λi) : Q] ≥ p− 1 > m. This contradicts the
fact that [Q(λi) : Q] is smaller than the size m of D∗. Thus I −D`∗ is invertible

and (I − Dk`∗ )/(I − D`∗) = I + D`∗ + · · ·+ D(k−1)`
∗ and

det

(
I − Dk`∗
I − D`∗

)
=

m∏
i=1

1− λk`i
1− λ`i

.

Let N0 > m+1 and let ` be a positive integer all of whose prime divisors are
greater than N0. Assume |λi| = 1. By our assumption, λi 6= 1 and is a root of
unity. The above argument shows that 1− λ`i 6= 0 and by the same reasoning
1 − λk`i 6= 0; thus (1 − λk`i )/(1 − λ`i) is nonzero and finite for each such k and
`. Hence we can choose a constant δ > 0 such that for all such k and `∣∣∣1− λk`i

1− λ`i

∣∣∣ > δ.
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For λi with |λi| 6= 1, as N0 →∞, we have∣∣∣1− λk`i
1− λ`i

∣∣∣ = |1 + λ`i + λ2`
i + · · ·+ λk−1

i | →

{
1 when |λi| < 1

∞ when |λi| > 1.

By the assumption that |detD∗| > 1, there exists an eigenvalue whose ab-
solute value is bigger than 1. Hence as N0 →∞ we have

m∏
i=1

∣∣∣1− λk`i
1− λ`i

∣∣∣→∞.
Consequently, for N0 large enough, the lemma is proved. �

Lemma 3.2. Let M = Π\S be an infra-solvmanifold of type (R). Let f be a
self-map on M with an affine homotopy lift (d,D). Assume that

(1) any eigenvalue λ of D∗ of modulus 1 is a root of unity, but not 1;
(2) detD∗ 6= 0,±1.

Then there exists a positive integer N1 such that

|det(I − Dk∗)| >
∑

1<` | k

|det(I − Dk/`∗ )|

for all positive integers k, provided all its positive prime divisors are greater
than N1.

Proof. Let λ1, . . . , λm be the eigenvalues of D∗ counted with multiplicities.
From our assumptions and hence from the observations in the proof of Lemma
3.1, we have:

• Since detD∗ 6= 0, all λi are nonzero.
• If |λi| = 1, then λi 6= 1 and λi is a root of unity, and 1− λki 6= 0 for all
k whose prime divisors are > N0 where N0 is a positive integer chosen
in the previous lemma; hence there are constants 0 < δ1 < δ2 such that
for all λi with |λi| ≤ 1, we have δ1 ≤ |1 − λki | ≤ δ2 for all k with this
property.

For those eigenvalues with |λi| > 1, we claim that there is a sufficiently large k
such that ∑

1<` | k

|1− λk/`i | < |1− λ
k
i |.

Suppose on the contrary that for any K > 0 there is k0 > K such that

|1− λk0
i | ≤

∑
1<` | k0

|1− λk0/`
i |.

Then

|1− λk0
i | ≤

∑
1<` | k0

|1− λk0/2
i | < τ(k0)|1− λk0/2

i |,



HOMOTOPY MINIMAL PERIODS OF MAPS ON INFRA-SOLVMANIFOLDS 301

where τ(k) is the number of all the divisors of k. Since τ(k) ≤ 2
√
k (see

[16, Exercise 3.2.17]), we have

2
√
k0 > |1 + λ

k0/2
i | ≥ |λi|k0/2 − 1,

which contradicts the obvious fact that limk→0

√
k/(|λi|k/2 − 1) = 0.

Therefore we can choose N1 ≥ N0 such that if k is a positive integer whose
prime divisors are ≥ N1, then∑

1<` | k

|det(I − Dk/`∗ )| =
∑

1<` | k

(
m∏
i=1

|1− λk/`i |

)

≤
m∏
i=1

 ∑
1<` | k

|1− λk/`i |


<

m∏
i=1

|1− λki | = |det(I − Dk∗)|. �

Lemma 3.3. Let M = Π\S be an infra-solvmanifold of type (R). Let f be a
self-map on M with an affine homotopy lift (d,D). Assume that

(1) any eigenvalue λ of D∗ of modulus 1 is a root of unity, but not 1;
(2) detD∗ 6= 0,±1.

Then there exists a positive integer N2 such that the equality

Z =
⋃

1<` | k

(I + D`∗ + D2`
∗ + · · ·+ Dk−`∗ )(Z)

is impossible for all positive integers k, provided its positive prime divisors are
all greater than N2.

Proof. Remark that the proof of Lemma 3.1 shows that there exists a positive
integer N0 such that for all positive integers k whose prime divisors are greater
than N0, I − D`∗ has nonzero determinant if ` | k. Since D∗(Z) ⊂ Z, we have

(I − Dk∗)(Z) = (I + D`∗ + D2`
∗ + · · ·+ Dk−`∗ )(I − D`∗)(Z)

⊂ (I + D`∗ + D2`
∗ + · · ·+ Dk−`∗ )(Z)

for all k and ` with ` | k. Thus if we had the equality

Z =
⋃

` | k,1<`<k

(I + D`∗ + D2`
∗ + · · ·+ Dk−`∗ )(Z)

we would have

Z/(I − Dk∗)(Z) =

 ⋃
` | k,` 6=1,k

(I + D`∗ + D2`
∗ + · · ·+ Dk−`∗ )(Z)

 /(I − Dk∗)(Z)

=
⋃

` | k,` 6=1,k

(
(I + D`∗ + D2`

∗ + · · ·+ Dk−`∗ )(Z)/(I − Dk∗)(Z)
)
.
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We remark that Z is a free abelian group and I+D`∗+D2`
∗ + · · ·+Dk−`∗ defines

an injective endomorphism of Z. In particular, we have an isomorphism

Z/(I − D`∗)(Z)

∼= (I + D`∗ + D2`
∗ + · · ·+ Dk−`∗ )Z/(I + D`∗ + D2`

∗ + · · ·+ Dk−`∗ )(I − D`∗)(Z)

= (I + D`∗ + D2`
∗ + · · ·+ Dk−`∗ )Z/(I − Dk∗)(Z).

This would imply

Z/(I − Dk∗)(Z) ∼=
⋃

` | k,` 6=1,k

(
Z/(I − D`∗)(Z)

)
and hence we would have

|det(I − Dk∗)| ≤
∑

` | k,` 6=1,k

|det(I − D`∗)| ≤
∑

1<` | k

|det(I − Dk/`∗ )|.

This contradicts Lemma 3.2. �

Now we are ready to state and prove our main results.

Theorem 3.4. Let M = Π\S be an infra-solvmanifold of type (R). Let f be
a self-map on M with an affine homotopy lift (d,D). Let ϕ : Π → Π be the
homomorphism satisfying

ϕ(α)(d,D) = (d,D)α, ∀α ∈ Π.

Assume that

(1) any eigenvalue λ of D∗ of modulus 1 is a root of unity, but not 1;
(2) detD∗ 6= 0,±1;
(3) fix(ϕ̄ : Φ→ Φ) = {I}.

Then there exists an integer N with the following property: if k is a positive
integer with prime factorization k = pn1

1 · · · pns
s such that all pi’s are greater

than N , then k ∈ HPer(f).

Proof. Choose an integer N so that N ≥ max{m + 1, N2, order of ϕ̄}. Let
k = pn1

1 · · · pns
s be a prime factorization of k such that all pi’s are greater than

N . Then we have to show that k ∈ HPer(f). For this purpose, by Theorem 2.4,
we need to find α = (a,A) ∈ Π satisfying:

• det(I −A∗Dk
∗) 6= 0,

• ∀ ` < k with ` | k, ∀ β ∈ Π, α(d,D)k 6= (β(d,D)`)k/`.

We will show that we can choose α = (a, I) in Γ ⊂ Π. Recall first that the
proof of Lemma 3.1 shows that there exists a positive integer N0 such that
for all positive integers k whose prime divisors are larger than N0, I − D`∗ has
nonzero determinant if ` | k. Since N ≥ N0, det(I − D`∗) 6= 0 for all ` | k.
In particular, det(I − Dk∗) 6= 0. By [25, Lemma 3.3] [9, Theorem 1], we have
det(I −Dk

∗) = det(I − Dk∗) 6= 0.
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It remains to prove the second condition. We assume on the contrary that for
any α = (a, I) ∈ Γ, there exists ` < k with ` | k and there exist β = (b, B) ∈ Π
such that α(d,D)k = (β(d,D)`)k/`, which is equivalent to

α = βϕ`(β)ϕ2`(β) · · ·ϕk−`(β).(†)
Now we recall that since D is an automorphism, ϕ is the conjugation by

(d,D), ϕ|Γ = µ(d)D and ϕ̄ is the conjugation by D. The matrix part (the
holonomy part) of both sides of (†) yields

I = Bϕ̄`(B)ϕ̄2`(B) · · · ϕ̄k−`(B).

Taking ϕ̄`, we have

I = ϕ̄`(B)ϕ̄2`(B) · · · ϕ̄k−`(B)ϕ̄k(B).

Hence

ϕ̄k(B)−1 = B−1 = ϕ̄`(B)ϕ̄2`(B) · · · ϕ̄k−`(B).

This gives us ϕ̄k(B) = B. By the choice of k, k must be relatively prime to the
order p of ϕ̄. Choose x, y ∈ Z so that kx+ py = 1. Since ϕ̄ = ϕ̄kx+py = (ϕ̄k)x,
it follows that ϕ̄(B) = B. Since fix(ϕ̄) = {I} by our assumption, we have
B = I. Plugging into (†), we have

a = bϕ`(b)ϕ2`(b) · · ·ϕk−`(b).
Since ϕ|Γ = µ(d)D = D, we have

a = bD`(b)D2`(b) · · ·Dk−`(b)
for some ` < k with ` | k.

Now we have to show that for any ` < k with ` | k
{eD`(e)D2`(e) · · ·Dk−`(e) | e ∈ Γ} 6= Γ.

Recall in the proof of Lemma 2.5 that Γ has a central series

Γ = Γ0 ⊃ nil(Γ) = Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γc ⊃ Γc+1 = 1

with Γi/Γi+1
∼= Zki . Since D(Γi) ⊂ Γi, it induces D̄i : Γi/Γi+1 → Γi/Γi+1.

Note also that

D∗ =


D̄c 0 · · · 0
0 D̄c−1 · · · 0
...

...
. . .

...
0 0 · · · D̄0

 ,
where D̄i are integer matrices. Hence some D̄i satisfies the assumptions (1) and
(2). By Lemma 3.3, we have

{ē+ D̄`i(ē) + D̄2`
i (ē) + · · ·+ D̄k−`i (ē) | ē ∈ Γi/Γi+1} 6= Γi/Γi+1.

This proves our assertion. Hence a ∈ Γ can be chosen so that

a 6= bϕ`(b)ϕ2`(b) · · ·ϕk−`(b)
for any b ∈ Γ. This contradiction proves the second condition. �
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Corollary 3.5. Let M = Π\S be an infra-solvmanifold of type (R) and let f
be a self-map on M with an affine homotopy lift (d,D). Let ϕ : Π→ Π be the
homomorphism satisfying

ϕ(α)(d,D) = (d,D)α, ∀α ∈ Π.

Assume that

(1) any eigenvalue λ of D∗ of modulus 1 is a root of unity, but not 1;
(2) detD∗ 6= 0,±1;
(3) fix(ϕ̄ : Φ→ Φ) = {I}.

Then DH(f) is positive.

Proof. By Theorem 3.4, there exists an integer N with the following property:
for any positive integer k = pn1

1 · · · pns
s with all pi’s distinct primes and greater

than N , k ∈ HPer(f). Thus

HPer(f) ⊃ {k | any prime divisor of k is > N}.
Let q1, . . . , q` be the all prime numbers which are smaller than or equal to N .
Then the set

{k | k ≡ 1 mod q1 · · · q`}
is contained in the set on the right-hand side of the above. For, if k ≡ 1
mod q1 · · · q` and if p is a prime divisor of k with p ≤ N , then p = qj for some
j; thus qj | k and qj | k − 1 and hence qj = 1, a contradiction.

Furthermore, we have that N ! | k − 1 implies q1 · · · q` | k − 1. This shows
that

HPer(f) ⊃ {k | k ≡ 1 mod N !}
and the set on the right-hand side has density 1/N !. Consequently,

DH(f) ≥ 1/N ! > 0. �

A special solvmanifold is an infra-solvmanifold with the trivial holonomy
group. Hence the third condition of Corollary 3.5 on such a manifold is auto-
matically fulfilled. Immediately we have:

Corollary 3.6. Let f be a self-map on a special solvmanifold M with a Lie
group homomorphism D as a homotopy lift. Assume that

(1) any eigenvalue λ of D∗ of modulus 1 is a root of unity, but not 1;
(2) detD∗ 6= 0,±1.

Then DH(f) is positive.

4. Computational results

In this section, we will consider some examples on infra-solvmanifolds up to
dimension three. For infra-solvmanifolds up to dimension 3, there are only three
possibilities for the solvable Lie group G on which the manifold is modeled. It
can be modeled on either the abelian groups Rn(n ≤ 3), the 2-step nilpotent
Heisenberg group Nil or the 2-step solvable Lie group Sol.
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We can find a complete description of HPer(f) for maps f on tori in [2]
and [18], and on the Klein bottle in [21]. The remaining infra-solvmanifolds of
dimension 3 are three-dimensional flat manifolds, infra-nilmanifolds on Nil and
infra-solvmanifolds of Sol.

We will give three examples, one from each remaining manifold. For any self-
map f on the manifold Π\G, let ϕ : Π→ Π be a homomorphism induced by f .
Consider an affine map (d,D) on G satisfying (∗). To apply Corollary 3.5, we
have to consider the case where D = µ(d)D is invertible. If this is the case, then
(∗) says that ϕ is the conjugation by (d,D), that is, ϕ(α) = (d,D)α(d,D)−1.
If α = (a, I) ∈ Γ, then

ϕ(α) = (d,D)(a, I)(d,D)−1 = (dD(a)d−1, I) = (µ(d)D(a), I).

Here µ(d) is the automorphism on G obtained by conjugating by the element
d ∈ G. Thus ϕ(Γ) ⊂ Γ and ϕ|Γ = µ(d)D = D, and hence ϕ̄ is the conjugation
by D. In particular ϕ̄ : Φ→ Φ is an isomorphism.

We start with the following easy observation.

Lemma 4.1. Let Φ be a group with presentation

Φ = 〈x, y | x2 = y2 = 1, xy = yx〉,

and let ψ be an isomorphism on Φ. Then fix(ψ) = 1 if and only if ψ satisfies
one of the following:

• ψ(x) = y, ψ(y) = xy
• ψ(x) = xy, ψ(y) = x

4.1. A flat manifold of dimension three

We have a complete classification of three-dimensional Bieberbach groups.
There are six orientable ones and four nonorientable ones, see the book [35,
Theorems 3.5.5 and 3.5.9]. Every group has an explicit representation into
R3 o GL(4,Z) (not into R4 o O(4)) in this book. Of course one of them is
G1 = Z3. Let

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 ,
and let ti = (ei, I) ∈ R3 o GL(3,Z). Then t1, t2 and t3 generate the subgroup
Γ of R3 o GL(3,Z), which is isomorphic to the group of all integer vectors of
R3.

Let α = (a,A), β = (b, B) and γ = (c, C) be elements of R3 o GL(3,Z),
where

a =

 1
2
0
0

 , b =

0
1
2
1
2

 , c =

 1
2
1
2
1
2

 ,
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A =

1 0 0
0 −1 0
0 0 −1

 , B =

−1 0 0
0 1 0
0 0 −1

 , C =

−1 0 0
0 −1 0
0 0 1

 .
Then A,B,C have order 2 and AB = C = BA, and

G6 =

〈
t1, t2, t3, α, β, γ

∣∣∣
[ti, tj ] = 1, γβα = t1t3,
α2 = t1, αt2α

−1 = t−1
2 , αt3α

−1 = t−1
3 ,

βt1β
−1 = t−1

1 , β2 = t2, βt3β
−1 = t−1

3 ,
γt1γ

−1 = t−1
1 , γt2γ

−1 = t−1
2 , γ2 = t3

〉
.

Thus G6 fits the short exact sequence

1 −→ Γ −→ G6 −→ Φ −→ 1,

where Φ = 〈A,B〉 ∼= Z2 ⊕ Z2. Every element of G6 can be written uniquely in
the form αkβmtn3 . We first observe the following: Since γβα = t1t3, we have
γ = αβ−1t3, and

βmαk =


αkβm when (k,m) = (e, e)

α−kβm when (k,m) = (e, o)

αkβ−m when (k,m) = (o, e)

α−kβ−mt3 when (k,m) = (o, o)

and

(αkβmtn3 )2 = αk(βmαk)βmt
((−1)k+m+1)n
3

=


α2kβ2mt2n3 when (k,m) = (e, e)

β2m when (k,m) = (e, o)

α2k when (k,m) = (o, e)

t2n−1
3 when (k,m) = (o, o).

Let ϕ : G6 → G6 be any homomorphism that induces an isomorphism ϕ̄ on
Φ satisfying fix(ϕ̄) = {I}. By Lemma 4.1, we have either ϕ̄(ᾱ) = β̄, ϕ̄(β̄) = ᾱβ̄
or ϕ̄(ᾱ) = ᾱβ̄, ϕ̄(β̄) = ᾱ.

In general, ϕ has the form

ϕ(α) = αk1βm1tn1
3 , ϕ(β) = αk2βm2tn2

3 , ϕ(t3) = αk3βm3tn3
3 .

Since γ = αβ−1t3, a simple calculation shows that

ϕ(γ) = αk1βm1−m2α−k2+k3βm3t
(−1)k2+k3+m2+m3 (n1−n2)+n3

3 .

Case ϕ̄(ᾱ) = β̄, ϕ̄(β̄) = ᾱβ̄.
Then k1 is even and k2,m1,m2 are odd. So, we have

ϕ(γ) = αk1−k2+k3β−m1+m2+m3tn1−n2+n3
3 .

Since α2 = t1, β
2 = t2 and γ2 = t3, a simple calculation shows that

α2 = t1 ⇒ ϕ(t1) = ϕ(α)2 = (αk1βm1tn1
3 )2 = β2m1 = tm1

2 ;
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β2 = t2 ⇒ ϕ(t2) = ϕ(β)2 = (αk2βm2tn2
3 )2 = t2n2−1

3 ;

γ2 = t3 ⇒ k3 = 2(k1 − k2 + k3),m3 = 0, n3 = 0.

Hence ϕ(t3) = αk3 = t
k3/2
1 , and it follows that ϕ(Γ) ⊂ Γ and so D = ϕ|Γ and

D∗ =

 0 0 k3

2
m1 0 0
0 2n2 − 1 0

 .
Thus detD∗ = k3

2 m1(2n2 − 1) 6= 0,±1 if and only if either k3 6= 0 or k3 =
±2,m1 = ±1, 2n2 − 1 = ±1. If D∗ has an eigenvalue of modulus 1, then
detD∗ = ±1. This shows that the condition (2) of Corollary 3.5 implies the
condition (1). Consequently, when k1, k3,m3 are even and k2,m1,m2 are odd,
if k3 6= 0 or

(k3,m1, n2) /∈ {(2, 1, 0), (2,−1, 0), (−2, 1, 0), (−2,−1, 0),

(2, 1, 1), (2,−1, 1), (−2, 1, 1), (−2,−1, 1)},

then DH(f) > 0.

Case ϕ̄(ᾱ) = ᾱβ̄, ϕ̄(β̄) = ᾱ.
Then k1, k2,m1 are odd and m2 is even. So, we have

ϕ(γ) = αk1+k2−k3β−m1+m2+m3t−n1+n2+n3
3 .

Since α2 = t1, β
2 = t2 and γ2 = t3, a simple calculation shows that

α2 = t1 ⇒ ϕ(t1) = ϕ(α)2 = (αk1βm1tn1
3 )2 = t2n1−1

3 ;

β2 = t2 ⇒ ϕ(t2) = ϕ(β)2 = (αk2βm2tn2
3 )2 = α2k2 = tk2

1 ;

γ2 = t3 ⇒ k3 = 0,m3 = 2(−m1 +m2 +m3), n3 = 0.

Hence ϕ(t3) = βm3 = t
m3/2
2 , and it follows that ϕ(Γ) ⊂ Γ and so D = ϕ|Γ and

D∗ =

 0 k2 0
0 0 m3

2
2n1 − 1 0 0

 .
Hence detD∗ = k2

m3

2 (2n1 − 1) 6= 0,±1 if and only if either m3 6= 0 or k2 =
±1,m3 = ±2, 2n1 − 1 = ±1. If D∗ has an eigenvalue of modulus 1, then
detD∗ = ±1. This shows that the condition (2) of Corollary 3.5 implies the
condition (1). Consequently, when k1, k2,m1 are odd and k3,m2,m3 are even,
if m3 6= 0 or

(k3,m1, n2) /∈ {(1, 2, 0), (1,−2, 0), (−1, 2, 0), (−1,−2, 0),

(1, 2, 1), (1,−2, 1), (−1, 2, 1), (−1,−2, 1)},

then DH(f) > 0.
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4.2. An infra-nilmanifold modeled on Nil

We will consider a three-dimensional infra-nilmanifold modeled on the
Heisenberg group Nil. Recall that

Nil =


1 x z

0 1 y
0 0 1

 ∣∣∣ x, y, z ∈ R

 .

For all integers k > 0, we consider the subgroups Γk of Nil:

Γk =


1 m − `

k
0 1 n
0 0 1

 ∣∣∣ `,m, n ∈ Z

 .

These are lattices of Nil and every lattice of Nil is isomorphic to some Γk.
Letting

s1 =

1 1 0
0 1 0
0 0 1

 , s2 =

1 0 0
0 1 1
0 0 1

 , s3 =

1 0 − 1
k

0 1 0
0 0 1

 ,
we obtain a presentation of Γk

Γk = 〈s1, s2, s3 | [s3, s1] = [s3, s2] = 1, [s2, s1] = sk3〉.
Every element of Γk can be written uniquely as the form

sn2 s
m
1 s

`
3 =

1 m − `
k

0 1 n
0 0 1

 .
Remark that sm1 s

n
2 = sn2 s

m
1 s
−kmn
3 . All possible almost-Bieberbach groups can

be found in [3, pp. 799–801] or [5].
Consider an almost Bieberbach group Π given by

Π =

〈
s1, s2, s3, α

∣∣∣ [s3, s1] = [s3, s2] = 1, [s2, s1] = sk3 ,
αs1α

−1 = s2, αs2α
−1 = s−1

1 s−1
2 , α3 = s2

3

〉
.

This is a 3-dimensional almost Bieberbach group π6,2 or π6,3 with Seifert bundle
type 6.

Let ϕ : Π → Π be a homomorphism. Every element of Π is of the form
sn2 s

m
1 s

`
3, sn2 s

m
1 s

`
3α or sn2 s

m
1 s

`
3α

2. In order to have an isomorphism ϕ̄ : Φ → Φ
such that fix(ϕ) = {I}, we must have that ϕ̄(ᾱ) = ᾱ2. This implies that ϕ has
the form

ϕ(s1) = sn1
2 sm1

1 s`13 , ϕ(s2) = sn2
2 sm2

1 s`23 , ϕ(α) = sn3
2 sm3

1 α3`3+2.

Then it can be seen as before that

ϕ(s2
3) = ϕ(α)3 = s

(3`3+2)−m3(m3+1)
2 k+(m2

3+m3n3+n2
3)k−n3(n3+1)

2 k
3 .

Since ϕ(s3) ∈ Γk, ϕ(s3) is of the form sn2 s
m
1 s

`
3 and so

ϕ(s2
3) = (sn2 s

m
1 s

`
3)2 = s2n

2 s2m
1 s2`−kmn

3 .
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Hence ϕ(s3) = s`3. Furthermore, the relations αs1α
−1 = s2 and αs2α

−1 =
s−1

1 s−1
2 are preserved by ϕ. This induces the conditions n1 = n2 = −m2 and

m1 = −2m2. The relation [s2, s1] = sk3 yields that ` = m1n2 −m2n1 = 3m2
2.

Consequently, the integral differential of D = ϕ|Γk
with respect to the basis

{log(s1), log(s2), log(s3)} of nil is

D∗ =

−2m2 m2 0
−m2 −m2 0

0 0 3m2
2

 .
Hence detD∗ = (3m2

2)2 and the eigenvalues of D∗ are ` and −3±
√

3i
2 m2. No

eigenvalues of D∗ are of modulus 1, and detD∗ = 0 (i.e., m2 = 0) or detD∗ ≥ 9.
Consequently if m2 6= 0 then DH(f) > 0.

4.3. Infra-solvmanifolds modeled on Sol

Next we will consider a closed 3-manifold with Sol-geometry. Recall that
Sol = R2 oφ R where

φ(t) =

[
et 0
0 e−t

]
.

Then Sol is a connected and simply connected unimodular 2-step solvable Lie
group of type (R). It has a faithful representation into Aff(R3) as follows:

Sol =



et 0 0 x
0 e−t 0 y
0 0 1 t
0 0 0 1

 ∣∣∣ x, y, t ∈ R

 .

Let M be a closed 3-manifold with Sol-geometry. Then the fundamental
group Π of M is a Bieberbach group of Sol, and M = Π\Sol. Further, Π can
be embedded into Aff(Sol) = SoloAut(Sol) so that there is an exact sequence

1 −→ Γ −→ Π −→ Π/Γ −→ 1,

where Γ = Π ∩ Sol is a lattice of Sol and Φ = Π/Γ is a finite group, called the
holonomy group of Π or M , which sits naturally into Aut(Sol), see [8]. The
lattices Γ of Sol are determined by 2× 2-integer matrices A

A =

[
`11 `12

`21 `22

]
of determinant 1 and trace > 2, see for example [29, Lemma 2.1]. Namely,

Γ = ΓA = 〈a1, a2, τ | [a1, a2] = 1, τaiτ
−1 = A(ai)〉 = Z2 oA Z.

Let f be a self-map on ΓA\Sol. By [29, Theorem 2.4], the homomorphism
ϕ : ΓA → ΓA induced by f is determined by

ϕ(ai) = aui , ϕ(τ) = apτ ζ



310 J. B. LEE AND X. ZHAO

for some ui,p ∈ Z2 and ζ ∈ Z. Note that ϕ extends uniquely to a Lie group
homomorphism on Sol. It follows easily that all the possible (integer) matrices
D∗ are of the form

D∗ =

[
u1 u2 0
0 0 ζ

]
.

We say that ϕ is of type (I) if ζ = 1; of type (II) if ζ = −1; of type (III) if
ζ 6= ±1. When ϕ is of type (III), we have ϕ(ai) = 1.

Now we consider the conditions of Corollary 3.6. These eliminate ϕ of type
(I) and (III). If ϕ of type (II) satisfies the conditions of Corollary 3.6, then
DH(f) > 0. In fact, it is shown in [28, Theorem 5.1] that such a map has
HPer(f) = N− 2N, and so DH(f) = 1/2.
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[32] O. M. Šarkovs’kǐı, Co-existence of cycles of a continuous mapping of the line into itself,
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