Acknowledgement
Supported by : University of Kashan
References
- Alibeigloo, A. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity", Compos. Struct., 95, 612-622. https://doi.org/10.1016/j.compstruct.2012.08.018
- Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenge", Mater. Design., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Ferreira, A.J.M., Fasshauer, G.E., Batra, R.C. and Rodrigues, J.D. (2008), "Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter", Compos. Struct ., 86(4), 328-343. https://doi.org/10.1016/j.compstruct.2008.07.025
- Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Nolte, M.C.M. and Schulte, K. (2006), "Fundamental aspects of nano-reinforced composites", Compos. Sci. Technol., 66(16), 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
- Ghorbanpour Arani, A., Abdollahian, M. and Jalaei, M.H. (2015a), "Vibration of bioliquid-filled microtubules embeded in cytoplasm including surface effects using modified couple stress theory", J. Theor. Biol., 367, 29-38. https://doi.org/10.1016/j.jtbi.2014.11.019
- Ghorbanpour Arani, A., Kolahchi, R. and Zarei, M.s. (2015b), "Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensor and actuators using refined Zigzag theory", Compos. Struct., 132, 506-526. https://doi.org/10.1016/j.compstruct.2015.05.065
- Ghorbanpour Arani, A., Mosayyebi, M., Kolahdouzan, F., Kolahchi R. and Jamali, M. (2016), "Refined Zigzag theory for vibration analysis of viscoelastic FG-CNTRC micro plates integrated with piezoelectric layers", P. I. Mech. Eng G-J Aer. DOI: 10.1177/0954410016667150
- Hosseini, M. and Sadeghi-Goughari, M. (2016), "Vibration and instability analysis of nanotubes conveying fluid subjectrd to a longitudinal magnetic field", App. Math. Model., 40(4), 2560-2576. https://doi.org/10.1016/j.apm.2015.09.106
- Hosseini-Hashemi, S.H., Khorshidi, K. and Amabili, M. (2008), "Exact solution for linear buckling of rectangular Mindlin plates", J. sound. Vib., 315(1-2), 318-342. https://doi.org/10.1016/j.jsv.2008.01.059
- Iurlaro, L., Gherlone, M., Di Sciuva, M. and Tessler, A. (2013), "Assessment of the refined zigzag theory for bending, vibration, and buckling of sandwich plates: A comparative study of different theories", Compos. Struct., 106, 777-792. https://doi.org/10.1016/j.compstruct.2013.07.019
- Jung, W.Y., Han, S.C. and Park, W.T. (2014), "A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium", Compos. Part B., 60, 746-756. https://doi.org/10.1016/j.compositesb.2013.12.058
- Kiani, K. (2013), "Characterization of free vibration of elastically supported double-walled carbon nanotubes subjected to a longitudinally varying magnetic field", Acta. Mech., 224(12), 3139-3151. https://doi.org/10.1007/s00707-013-0937-8
- Kiani, K. (2014a), "Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plates theories", Physica. E., 57, 179-192. https://doi.org/10.1016/j.physe.2013.10.034
- Kiani, K. (2014b), "Magnetically affected single-walled carbon nanotubes as nanosensors", Mech. Res. Commun., 60, 33-39. https://doi.org/10.1016/j.mechrescom.2014.05.005
- Kiani, K. (2014c), "Revisiting the free transverse vibration of embedded single-layer graphene sheets acted upon by in-plane magnetic field", J. Mech. Sci. Technol., 28(9), 3511-3516. https://doi.org/10.1007/s12206-014-0811-1
- Kiani, K. (2015a), "Elastic wave propagation in magnetically affected double-walled carbon nanotubes", Meccanica, 50(4), 1003-2026. https://doi.org/10.1007/s11012-014-9957-2
- Kiani, K. (2015b), "Column buckling of magnetically affected stocky nanowires carrying electric current", J. Phys. Chem. Solids., 83, 140-151. https://doi.org/10.1016/j.jpcs.2015.03.020
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2012), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168.
- Li, Y.S. and Pan, E. (2015), "Static bending and free vibration of a functionally graded piezoelectric microplate based on modified couple stress theory", Int. J. Eng. Sci., 97, 40-59. https://doi.org/10.1016/j.ijengsci.2015.08.009
- Lou, J., He, L., Du, J. and Wu, H. (2016), "Buckling and post-buckling analyses of piezoelectric hybrid microplate subject to thermo-electro-mechanical loads based on the modified couple stress theory", Compos. Struct., 153, 332-344. https://doi.org/10.1016/j.compstruct.2016.05.107
- Lou, J. and He, L. (2015), "Closed-form solutions for nonlinear bending and free vibration of FG microplates based on the modified couple stress theory", Compos. Struct., 131, 810-820. https://doi.org/10.1016/j.compstruct.2015.06.031
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributionbs", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Mizusawa, T. (1993), "Buckling of rectangular Mindlin plates with tapered thickness by the spline strip method", Int. J. Solids. Struct., 30(2), 1663-1677. https://doi.org/10.1016/0020-7683(93)90196-E
- Mohammad Abadi, M. and Daneshmehr, A.R. (2014), "Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundry conditoins", Int. J. Eng. Sci., 74, 1-14. https://doi.org/10.1016/j.ijengsci.2013.08.010
- Moita, J.S., Araujo, A.L., Franco Correia, V.M., Mota Soares, C.M. and Mota Soares, C.A. (2015), "Buckling and geometrically nonlinear analysis of sandwich structures", Int. J. Mech. Sci., 92 154-161. https://doi.org/10.1016/j.ijmecsci.2014.12.008
- Narendar, S., Gupta, S.S. and Gopalakrishnan, S. (2012), "Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernolli beam theory", Appl. Math. Model., 36(9), 4529-4538. https://doi.org/10.1016/j.apm.2011.11.073
- Nateghi, A., Salamat-talab, M., Rezapour, J. and Daneshian, B. (2012), "Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory", Appl. Math. Model., 36(10), 4971-4987. https://doi.org/10.1016/j.apm.2011.12.035
- Rabani Bidgoli, M., Karimi, M. and Ghorbanpour Arani, A. (2015), "Viscous fluid induced vibration and instability of FGCNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., Int. J., 19(3), 713-733. https://doi.org/10.12989/scs.2015.19.3.713
- Ramamoorthy, M., Rajamohan, V. and AK, J. (2014), "Vibration analysis of a partially treated laminated composite magnetorheological fluid sandwich plate", J. Vib. Control., 22(3), 869-895. https://doi.org/10.1177/1077546314532302
- Salvetat, D. and Rubio, A. (2002), "Mechanical properties of carbon nanotubes: a fiber digest for beginners", Carbon, 40(10), 1729-1734. https://doi.org/10.1016/S0008-6223(02)00012-X
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shufrin, I. and Eisenberger, M. (2005), "Stability and vibration of shear deformable plates-first order and higher order analysis", Int. J. Solids. Struct., 42(3-4), 1225-1251. https://doi.org/10.1016/j.ijsolstr.2004.06.067
- Tessler, A., Di Sciuva, M. and Gherlone, M. (2009), "Refined Zigzag theory for laminated composite and sandwich plates", Technical, Report NASA-TP-2009-215561.
- Tessler, A., Di Sciuva, M. and Gherlone, M. (2010), "A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics", J. Mech. Mater. Struct., 5(2), 341-367. https://doi.org/10.2140/jomms.2010.5.341
- Upadhyay, A.K. and Shukla, K.K. (2013), "Post-buckling behavior of composite and sandwich skew plates", Int. Nonlinear Mech., 55, 120-127. https://doi.org/10.1016/j.ijnonlinmec.2013.05.010
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pres. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
- Zhang, D.G. and Zhou, H.M. (2015), "Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundation", Thin-Wall. Struct., 89, 142-152. https://doi.org/10.1016/j.tws.2014.12.021
Cited by
- Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites vol.31, pp.5, 2019, https://doi.org/10.12989/scs.2019.31.5.517
- Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs vol.34, pp.2, 2018, https://doi.org/10.12989/scs.2020.34.2.289
- Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.115
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
- Bending analysis of the multi-phase nanocomposite reinforced circular plate via 3D-elasticity theory vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.601
- Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets vol.28, pp.3, 2018, https://doi.org/10.12989/cac.2021.28.3.259