과제정보
연구 과제 주관 기관 : Plymouth University
참고문헌
- Abrahamsen Prsic, M., Ong, M.C., Pettersen, B., Myrhaug, D. (2014), "Large eddy simulations of flow around a smooth circular cylinder in a uniform current in the subcritical flow regime", Ocean Eng., 77, 61-73. https://doi.org/10.1016/j.oceaneng.2013.10.018
-
Achenbach, H. (1981), "On vortex shedding from smooth and rough cylinders in the range of Reynolds number
$6\;{\times}\;103\;to\;5\;{\times}\;106$ ", J. Fluid. Mech., 109, 239-251. https://doi.org/10.1017/S002211208100102X - Adachi, T. (1997), "Effects of surface roughness on the universal Strouhal number over the wide Reynolds number range", J. Wind Eng. Ind. Aerod., 69-71, 399-412. https://doi.org/10.1016/S0167-6105(97)00172-4
- Belloli, M., Rosa, L. and Zasso, A. (2014), "Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower", J. Wind Eng. Ind. Aerod., 126, 75-86. https://doi.org/10.1016/j.jweia.2014.01.004
- Blocken, B. (2014), "50 years of Computational Wind Engineering: Past, present and future", J. Wind Eng. Ind. Aerod., 129, 69-102. https://doi.org/10.1016/j.jweia.2014.03.008
- Blocken, B. (2015), "Computational fluid dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations", Build. Environ., 91, 219-245. https://doi.org/10.1016/j.buildenv.2015.02.015
- Canpolat, C. (2015), "Characteristics of flow past a circular cylinder with a rectangular groove", Flow Meas. Instrum., 45, 233-245. https://doi.org/10.1016/j.flowmeasinst.2015.06.028
- Canpolat, C. and Sahin, B. (2017), "Influence of single rectangular groove on the flow past a circular cylinder", Int. J. Heat Fluid Fl., 64, 79-88. https://doi.org/10.1016/j.ijheatfluidflow.2017.02.001
- Catalano, P., Wang, M., Iaccarino, G. and Moin, P. (2003). "Numerical simulation of the flow around a circular cylinder at high Reynolds number", Int. J. Heat Fluid Fl., 24, 463-469. https://doi.org/10.1016/S0142-727X(03)00061-4
- Delany, N.K. and Sorensen, N.E. (1953), "Low-speed drag of cylinders of various shapes", National Advisory Committee for Aeronautics, 3038.
- Frohlich, J. and Rodi, W. (2004), "LES of the flow around a circular cylinder of finite height", Int. J. Heat Fluid Fl., 25, 537-548. https://doi.org/10.1016/j.ijheatfluidflow.2004.02.006
- Franke, J., Hellsten, A., Schlunzen, K.H. and Carissimo, B. (2011), "The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary", Int J. Environ. Pollut., 44(1-4), 419-427. https://doi.org/10.1504/IJEP.2011.038443
- Ghosal, S. and Moin, P. (1995), "The basic equations for the largeeddy simulation of turbulent flows in complex-geometry ", J. Comput.Phys., 118, 24-37. https://doi.org/10.1006/jcph.1995.1077
- Gousseau, P., Blocken, B. and van Heijst, G.J.F. (2013), "Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification", Comput. Fluids, 79, 120-133. https://doi.org/10.1016/j.compfluid.2013.03.006
- Lubcke, H., Rung, T. and Thiele, F. (2001), "Comparison of LES and RANS in bluff-body flow", J. Wind Eng. Ind. Aerod., 89, 1471-1485. https://doi.org/10.1016/S0167-6105(01)00134-9
- Hanjalic, K. and Kenjeres, S. (2008), "Some developments in turbulence modeling for wind and environmental engineering", J. Wind Eng. Ind. Aerod., 96, 1537-1570. https://doi.org/10.1016/j.jweia.2008.02.054
- Hinsberg, V. and Paul, N. (2015), "The Reynolds number dependency of the steady and unsteady loading on a slightly rough circular cylinder: From subcritical up to high transcritical flow state", J. Fluid. Struct., 55, 526-539. https://doi.org/10.1016/j.jfluidstructs.2015.04.002
- Holmes, J.D. (2007), Wind loading of structures, (3th Ed.).
- Hu, H.X., Liu, C.B., Hu, H.Z. and Zheng, Y.G. (2013), "Threedimensional numerical simulation of the flow around two cylinders at supercritical Reynolds", Fluid Dyn. Res., 45, 1-22.
- Hu, G., Tse, K.T., Kwok, K.C.S. and Zhang, Y. (2015), "Large eddy simulation of flow around an inclined finite square cylinder", J. Wind Eng. Ind. Aerod., 146, 172-184. https://doi.org/10.1016/j.jweia.2015.08.008
- Franke, J. and Frank, W. (2002), "Large eddy simulation of the flow past a circular cylinder at Re=3900", J. Wind Eng. Ind. Aerod., 90, 1191-1206. https://doi.org/10.1016/S0167-6105(02)00232-5
- Kose, D.A. and Dick, E. (2010), "Prediction of the pressure distribution on a cubical building with implicit LES", J. Wind Eng. Ind. Aerod., 98, 628-649. https://doi.org/10.1016/j.jweia.2010.06.004
- Kim, S., Wilson, P.A. and Chen, Z.M. (2015a), "Large-eddy simulation of the turbulent near wake behind a circular cylinder: Reynolds number effect", Appl. Ocean Res., 49, 1-8. https://doi.org/10.1016/j.apor.2014.10.005
- Kim, S., Wilson, P.A. and Chen, Z.M. (2015b), "Effect of turbulence modelling on 3D LES of transitional flow behind a circular cylinder", Ocean Eng., 100, 19-25. https://doi.org/10.1016/j.oceaneng.2015.03.014
- Kiu, K.Y., Stappenbelt, B. and Thiagarajan, K.P. (2011), "Effects of uniform surface roughness on vortex-induced vibration of towed vertical cylinders", J. Sound. Vib., 330, 4753-4763. https://doi.org/10.1016/j.jsv.2011.05.009
- Lam, K., Lin, Y.F., Zou, L. and Liu, Y. (2010), "Investigation of turbulent flow past a yawed wavy cylinder", J. Fluid. Struct., 26(7-8), 1078-1097. https://doi.org/10.1016/j.jfluidstructs.2010.07.005
- Lu, C.L., Li, Q.S., Huang, S.H., Chen, F.B. and Fu, X.Y. (2012), "Large eddy simulation of wind effects on a long-span complex roof structure", J. Wind Eng. Ind. Aerod., 100, 1-18. https://doi.org/10.1016/j.jweia.2011.10.006
- Maruta, E., Kanda, M. and Sato, J. (1998), "Effects on surface roughness for wind pressure on glass and cladding of buildings", J. Wind Eng. Ind. Aerod., 74-76, 651-663. https://doi.org/10.1016/S0167-6105(98)00059-2
- Mo, J.O., Choudhry, A., Arjomandi, M. and Lee, Y.H. (2013), "Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model", J. Wind Eng. Ind. Aerod., 112, 11-24. https://doi.org/10.1016/j.jweia.2012.09.002
- Murakami, S. (1993a), "Comparison of various turbulence models applied to a bluff body", J. Wind Eng. Ind. Aerod., 46, 21-36.
- Murakami, S. (1993b), "Discussions of turbulence modelling and their applications: Comparison of various turbulence models applied to a bluff body", J. Wind Eng. Ind. Aerod., 46-47, 183-191.
- Nakamura, Y. and Tomonari, Y. (1982), "The effects of surface roughness on the flow past circular cylinders at high Reynolds number", J. Fluid Mech., 123, 363-378. https://doi.org/10.1017/S0022112082003103
- Ouvrard, H., Koobus, B., Dervieux, A. and Salvetti, M.V. (2010), "Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids", Comput. Fluids, 39(7), 1083-1094. https://doi.org/10.1016/j.compfluid.2010.01.017
- Parnaudeau, P., Carlier, J., Heitz, D. and Lamballais, E. (2008), "Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900", Phys. Fluids, 20.
- Qiu, Y., Sun, Y., Wu, Y. and Tamura, Y. (2014), "Analyzing the fluctuating pressures acting on a circular cylinder using stochastic decomposition", J. Fluid. Struct., 50, 512-527. https://doi.org/10.1016/j.jfluidstructs.2014.07.008
- Rodi, W. (1997), "Comparison of LES and RANS calculations of the flow around bluff bodies", J. Wind Eng. Ind. Aerod., 69, 55-57.
- Rodriguez, I., Lehmkuhl, O., Piomelli, U., Chiva, J., Borrell, R. and Oliva, A. (2017), "LES-based study of the roughness effects on the wake of a circular cylinder from subcritical to transcritical reynolds numbers", Flow Turbul. Combust., 99(3-4), 729-763. https://doi.org/10.1007/s10494-017-9866-2
- Schewe, G. (1983), "On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds number", J. Fluid Mech., 133, 265-285. https://doi.org/10.1017/S0022112083001913
- Shih, W.C.L., Wang, C., Coles, D. and Roshko, A. (1993), "Experiments on flow past rough circular-cylinders at large Reynolds-numbers", J. Wind Eng. Ind. Aerod., 49, 351-368. https://doi.org/10.1016/0167-6105(93)90030-R
- Tamura, T. (2008), "Towards practical use of LES in wind engineering", J. Wind Eng. Ind. Aerod., 96, 1451-1471. https://doi.org/10.1016/j.jweia.2008.02.034
- Wong, S.Y. and Lam, K.M. (2013), "Effect of recessed cavities on wind-induced loading and dynamic responses of a tall building", J. Wind Eng. Ind. Aerod., 114, 72-82. https://doi.org/10.1016/j.jweia.2012.12.013
- Xie, Z.N. and Gu, M. (2005), "A correlation-based analysis on wind-induced interference effects between two tall buildings", Wind Struct., 8(3), 163-178. https://doi.org/10.12989/was.2005.8.3.163
- Yamagishi, Oki (2005), "Effect of the number of grooves on flow characteristics around a circular cylinder with triangular grooves", J. Visualization, 8(1), 57-64. https://doi.org/10.1007/BF03181603
- Zan, S.J. (2008), "Experiments on circular cylinders in crossflow at Reynolds number up to 7 million", J. Wind Eng. Ind. Aerod., 96, 880-886. https://doi.org/10.1016/j.jweia.2007.06.015
- Zdravkovich, M.M. (1997), "Flow around circular cylinders" vol. 1. Fundamentals, J. Fluid Mech., 350, 375-378.
- Zhou, B., Wang, X., Gho, W.M. and Tan, S.K. (2015), "Force and flow characteristics of a circular cylinder with uniform surface roughness at subcritical Reynolds number", Appl. Ocean Res., 49, 20-26. https://doi.org/10.1016/j.apor.2014.06.002
- Zuo, D.L. (2014), "Full-scale measurement of wind pressure on the surface of an oscillating circular cylinders", J. Wind Eng. Ind. Aerod., 133, 65-79. https://doi.org/10.1016/j.jweia.2014.08.001