DOI QR코드

DOI QR Code

The effects of grooves on wind characteristics of tall cylinder buildings

  • Yuan, Wei-bin (College of Architecture and Civil Engineering, Zhejiang University of Technology) ;
  • Yu, Nan-ting (School of Engineering, University of Plymouth) ;
  • Wang, Zhao (College of Architecture and Civil Engineering, Zhejiang University of Technology)
  • 투고 : 2017.10.10
  • 심사 : 2018.01.23
  • 발행 : 2018.02.25

초록

For most full-scale tall buildings the Reynolds number of a flow field around a circular cylinder under strong wind is usually greater than $2{\times}10^7$, which is difficult to achieve in most wind tunnel tests. To explore the wind characteristics of tall cylindrical buildings with equidirectional grooves from subcritical to transcritical flow ($6.6{\times}10^4{\leq}Re{\leq}3.3{\times}10^5$ and $9.9{\times}10^6{\leq}Re{\leq}7.2{\times}10^7$), wind tunnel tests and full-scale large eddy simulations were carried out. The results showed that the rectangular-grooves narrow the wake width due to the downstream movement of the separation point and the deeper grooves cause smaller mean and fluctuating pressure while the peak pressure is little affected. Furthermore, the grooves lead to lower frequency of vortex shedding but the Strouhal number remains at the range from 0.15 to 0.35. The drag coefficient of the cylinders with grooves was found to be 2~3 times as large as that of smooth cylinders.

키워드

과제정보

연구 과제 주관 기관 : Plymouth University

참고문헌

  1. Abrahamsen Prsic, M., Ong, M.C., Pettersen, B., Myrhaug, D. (2014), "Large eddy simulations of flow around a smooth circular cylinder in a uniform current in the subcritical flow regime", Ocean Eng., 77, 61-73. https://doi.org/10.1016/j.oceaneng.2013.10.018
  2. Achenbach, H. (1981), "On vortex shedding from smooth and rough cylinders in the range of Reynolds number $6\;{\times}\;103\;to\;5\;{\times}\;106$", J. Fluid. Mech., 109, 239-251. https://doi.org/10.1017/S002211208100102X
  3. Adachi, T. (1997), "Effects of surface roughness on the universal Strouhal number over the wide Reynolds number range", J. Wind Eng. Ind. Aerod., 69-71, 399-412. https://doi.org/10.1016/S0167-6105(97)00172-4
  4. Belloli, M., Rosa, L. and Zasso, A. (2014), "Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower", J. Wind Eng. Ind. Aerod., 126, 75-86. https://doi.org/10.1016/j.jweia.2014.01.004
  5. Blocken, B. (2014), "50 years of Computational Wind Engineering: Past, present and future", J. Wind Eng. Ind. Aerod., 129, 69-102. https://doi.org/10.1016/j.jweia.2014.03.008
  6. Blocken, B. (2015), "Computational fluid dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations", Build. Environ., 91, 219-245. https://doi.org/10.1016/j.buildenv.2015.02.015
  7. Canpolat, C. (2015), "Characteristics of flow past a circular cylinder with a rectangular groove", Flow Meas. Instrum., 45, 233-245. https://doi.org/10.1016/j.flowmeasinst.2015.06.028
  8. Canpolat, C. and Sahin, B. (2017), "Influence of single rectangular groove on the flow past a circular cylinder", Int. J. Heat Fluid Fl., 64, 79-88. https://doi.org/10.1016/j.ijheatfluidflow.2017.02.001
  9. Catalano, P., Wang, M., Iaccarino, G. and Moin, P. (2003). "Numerical simulation of the flow around a circular cylinder at high Reynolds number", Int. J. Heat Fluid Fl., 24, 463-469. https://doi.org/10.1016/S0142-727X(03)00061-4
  10. Delany, N.K. and Sorensen, N.E. (1953), "Low-speed drag of cylinders of various shapes", National Advisory Committee for Aeronautics, 3038.
  11. Frohlich, J. and Rodi, W. (2004), "LES of the flow around a circular cylinder of finite height", Int. J. Heat Fluid Fl., 25, 537-548. https://doi.org/10.1016/j.ijheatfluidflow.2004.02.006
  12. Franke, J., Hellsten, A., Schlunzen, K.H. and Carissimo, B. (2011), "The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary", Int J. Environ. Pollut., 44(1-4), 419-427. https://doi.org/10.1504/IJEP.2011.038443
  13. Ghosal, S. and Moin, P. (1995), "The basic equations for the largeeddy simulation of turbulent flows in complex-geometry ", J. Comput.Phys., 118, 24-37. https://doi.org/10.1006/jcph.1995.1077
  14. Gousseau, P., Blocken, B. and van Heijst, G.J.F. (2013), "Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification", Comput. Fluids, 79, 120-133. https://doi.org/10.1016/j.compfluid.2013.03.006
  15. Lubcke, H., Rung, T. and Thiele, F. (2001), "Comparison of LES and RANS in bluff-body flow", J. Wind Eng. Ind. Aerod., 89, 1471-1485. https://doi.org/10.1016/S0167-6105(01)00134-9
  16. Hanjalic, K. and Kenjeres, S. (2008), "Some developments in turbulence modeling for wind and environmental engineering", J. Wind Eng. Ind. Aerod., 96, 1537-1570. https://doi.org/10.1016/j.jweia.2008.02.054
  17. Hinsberg, V. and Paul, N. (2015), "The Reynolds number dependency of the steady and unsteady loading on a slightly rough circular cylinder: From subcritical up to high transcritical flow state", J. Fluid. Struct., 55, 526-539. https://doi.org/10.1016/j.jfluidstructs.2015.04.002
  18. Holmes, J.D. (2007), Wind loading of structures, (3th Ed.).
  19. Hu, H.X., Liu, C.B., Hu, H.Z. and Zheng, Y.G. (2013), "Threedimensional numerical simulation of the flow around two cylinders at supercritical Reynolds", Fluid Dyn. Res., 45, 1-22.
  20. Hu, G., Tse, K.T., Kwok, K.C.S. and Zhang, Y. (2015), "Large eddy simulation of flow around an inclined finite square cylinder", J. Wind Eng. Ind. Aerod., 146, 172-184. https://doi.org/10.1016/j.jweia.2015.08.008
  21. Franke, J. and Frank, W. (2002), "Large eddy simulation of the flow past a circular cylinder at Re=3900", J. Wind Eng. Ind. Aerod., 90, 1191-1206. https://doi.org/10.1016/S0167-6105(02)00232-5
  22. Kose, D.A. and Dick, E. (2010), "Prediction of the pressure distribution on a cubical building with implicit LES", J. Wind Eng. Ind. Aerod., 98, 628-649. https://doi.org/10.1016/j.jweia.2010.06.004
  23. Kim, S., Wilson, P.A. and Chen, Z.M. (2015a), "Large-eddy simulation of the turbulent near wake behind a circular cylinder: Reynolds number effect", Appl. Ocean Res., 49, 1-8. https://doi.org/10.1016/j.apor.2014.10.005
  24. Kim, S., Wilson, P.A. and Chen, Z.M. (2015b), "Effect of turbulence modelling on 3D LES of transitional flow behind a circular cylinder", Ocean Eng., 100, 19-25. https://doi.org/10.1016/j.oceaneng.2015.03.014
  25. Kiu, K.Y., Stappenbelt, B. and Thiagarajan, K.P. (2011), "Effects of uniform surface roughness on vortex-induced vibration of towed vertical cylinders", J. Sound. Vib., 330, 4753-4763. https://doi.org/10.1016/j.jsv.2011.05.009
  26. Lam, K., Lin, Y.F., Zou, L. and Liu, Y. (2010), "Investigation of turbulent flow past a yawed wavy cylinder", J. Fluid. Struct., 26(7-8), 1078-1097. https://doi.org/10.1016/j.jfluidstructs.2010.07.005
  27. Lu, C.L., Li, Q.S., Huang, S.H., Chen, F.B. and Fu, X.Y. (2012), "Large eddy simulation of wind effects on a long-span complex roof structure", J. Wind Eng. Ind. Aerod., 100, 1-18. https://doi.org/10.1016/j.jweia.2011.10.006
  28. Maruta, E., Kanda, M. and Sato, J. (1998), "Effects on surface roughness for wind pressure on glass and cladding of buildings", J. Wind Eng. Ind. Aerod., 74-76, 651-663. https://doi.org/10.1016/S0167-6105(98)00059-2
  29. Mo, J.O., Choudhry, A., Arjomandi, M. and Lee, Y.H. (2013), "Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model", J. Wind Eng. Ind. Aerod., 112, 11-24. https://doi.org/10.1016/j.jweia.2012.09.002
  30. Murakami, S. (1993a), "Comparison of various turbulence models applied to a bluff body", J. Wind Eng. Ind. Aerod., 46, 21-36.
  31. Murakami, S. (1993b), "Discussions of turbulence modelling and their applications: Comparison of various turbulence models applied to a bluff body", J. Wind Eng. Ind. Aerod., 46-47, 183-191.
  32. Nakamura, Y. and Tomonari, Y. (1982), "The effects of surface roughness on the flow past circular cylinders at high Reynolds number", J. Fluid Mech., 123, 363-378. https://doi.org/10.1017/S0022112082003103
  33. Ouvrard, H., Koobus, B., Dervieux, A. and Salvetti, M.V. (2010), "Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids", Comput. Fluids, 39(7), 1083-1094. https://doi.org/10.1016/j.compfluid.2010.01.017
  34. Parnaudeau, P., Carlier, J., Heitz, D. and Lamballais, E. (2008), "Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900", Phys. Fluids, 20.
  35. Qiu, Y., Sun, Y., Wu, Y. and Tamura, Y. (2014), "Analyzing the fluctuating pressures acting on a circular cylinder using stochastic decomposition", J. Fluid. Struct., 50, 512-527. https://doi.org/10.1016/j.jfluidstructs.2014.07.008
  36. Rodi, W. (1997), "Comparison of LES and RANS calculations of the flow around bluff bodies", J. Wind Eng. Ind. Aerod., 69, 55-57.
  37. Rodriguez, I., Lehmkuhl, O., Piomelli, U., Chiva, J., Borrell, R. and Oliva, A. (2017), "LES-based study of the roughness effects on the wake of a circular cylinder from subcritical to transcritical reynolds numbers", Flow Turbul. Combust., 99(3-4), 729-763. https://doi.org/10.1007/s10494-017-9866-2
  38. Schewe, G. (1983), "On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds number", J. Fluid Mech., 133, 265-285. https://doi.org/10.1017/S0022112083001913
  39. Shih, W.C.L., Wang, C., Coles, D. and Roshko, A. (1993), "Experiments on flow past rough circular-cylinders at large Reynolds-numbers", J. Wind Eng. Ind. Aerod., 49, 351-368. https://doi.org/10.1016/0167-6105(93)90030-R
  40. Tamura, T. (2008), "Towards practical use of LES in wind engineering", J. Wind Eng. Ind. Aerod., 96, 1451-1471. https://doi.org/10.1016/j.jweia.2008.02.034
  41. Wong, S.Y. and Lam, K.M. (2013), "Effect of recessed cavities on wind-induced loading and dynamic responses of a tall building", J. Wind Eng. Ind. Aerod., 114, 72-82. https://doi.org/10.1016/j.jweia.2012.12.013
  42. Xie, Z.N. and Gu, M. (2005), "A correlation-based analysis on wind-induced interference effects between two tall buildings", Wind Struct., 8(3), 163-178. https://doi.org/10.12989/was.2005.8.3.163
  43. Yamagishi, Oki (2005), "Effect of the number of grooves on flow characteristics around a circular cylinder with triangular grooves", J. Visualization, 8(1), 57-64. https://doi.org/10.1007/BF03181603
  44. Zan, S.J. (2008), "Experiments on circular cylinders in crossflow at Reynolds number up to 7 million", J. Wind Eng. Ind. Aerod., 96, 880-886. https://doi.org/10.1016/j.jweia.2007.06.015
  45. Zdravkovich, M.M. (1997), "Flow around circular cylinders" vol. 1. Fundamentals, J. Fluid Mech., 350, 375-378.
  46. Zhou, B., Wang, X., Gho, W.M. and Tan, S.K. (2015), "Force and flow characteristics of a circular cylinder with uniform surface roughness at subcritical Reynolds number", Appl. Ocean Res., 49, 20-26. https://doi.org/10.1016/j.apor.2014.06.002
  47. Zuo, D.L. (2014), "Full-scale measurement of wind pressure on the surface of an oscillating circular cylinders", J. Wind Eng. Ind. Aerod., 133, 65-79. https://doi.org/10.1016/j.jweia.2014.08.001