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On-board Capacity Estimation of Lithium-ion Batteries Based 
on Charge Phase

Yapeng Zhou* and Miaohua Huang†

Abstract – Capacity estimation is indispensable to ensure the safety and reliability of lithium-ion 
batteries in electric vehicles (EVs). Therefore it's quite necessary to develop an effective on-board 
capacity estimation technique. Based on experiment, it’s found constant current charge time (CCCT) 
and the capacity have a strong linear correlation when the capacity is more than 80% of its rated value, 
during which the battery is considered healthy. Thus this paper employs CCCT as the health indicator 
for on-board capacity estimation by means of relevance vector machine (RVM). As the ambient 
temperature (AT) dramatically influences the capacity fading, it is added to RVM input to improve the 
estimation accuracy. The estimations are compared with that via back-propagation neural network 
(BPNN). The experiments demonstrate that CCCT with AT is highly qualified for on-board capacity 
estimation of lithium-ion batteries via RVM as the results are more precise and reliable than that 
calculated by BPNN.
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1. Introduction

Fossil fuel-based transportation contributes remarkably 
to global greenhouse gas (GHG) emissions and urban air 
pollution [1]. Hence electric vehicles (EVs) is widely 
considered as a promising alternative to reduce the 
dependence on fossil fuels, cut down GHG emissions, and 
improve air quality [2]. Therefore, EV technology has 
developed rapidly in recent years. Nevertheless, there 
still exist great uncertainties limiting the further market 
acceptance. One of the most significant factors is the 
capacity fading of lithium-ion batteries, which can cause an 
increasingly shorter driving range, thus fairly worrying 
the drivers during their driving. In addition, severe 
capacity fading may cause operational disability and even 
catastrophic failure of the whole system. It’s noted that 
capacity is the amount of electric charge a battery can 
deliver after being fully charged at its current state. 
Therefore, it’s quite necessary to develop an effective 
monitoring technique which can accurately estimate on-
board capacity to ensure lithium-ion batteries’ reliable 
operation and expand the EVs market acceptance.

In recent years, extensive research work has been 
conducted on capacity estimation of lithium-ion batteries. 
The techniques for capacity estimation can be generally 
divided into three categories: model-based estimation, 
data-driven estimation and direct measurement, as shown 
in Fig. 1.

Fig. 1. Techniques for capacity estimation of lithium-ion 
batteries

Electrochemical model contains some parameters 
reflecting the battery’s health condition in the aspect of 
electrochemistry, such as cathodic effective porosity and 
effective conductivity [3]. Once knowing the exact values 
of these parameters, the capacity can be calculated. The 
advantage of electrochemical model method is that it 
provides researchers with insights into what is happening 
inside the battery. However, it needs much knowledge 
about electrochemistry, and the model is quite complex to 
construct.

Empirical model tends to use cycle number to calculate 
capacity. For example, Micea et al. [4] and He et al. [5] 
used cycle number to construct a second-order polynomial 
regression model and exponential model to estimate the 
capacity, respectively. Yang et al. [6] constructed a two-
term logarithmic model to capture the battery degradation 
trends.

Equivalent circuit model (ECM) [7-16] is the most 
popular technique in model-based methods. Voltage, current
and resistance always exist in the model. Based on some 
filter methods such as Kalman filter, extended Kalman 
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filter (EKF) and particle filter (PF), some parameters can 
be obtained to calculate the capacity, e.g., resistance. 
Though the estimation results are superior to the empirical 
model, ECM method needs to update the model parameters 
continually, causing the computation more complex and 
time-consuming.

Direct measurement obtains the capacity directly from 
some monitored variants. Coulomb counting method [17] 
integrates the discharge current over time to obtain the 
capacity. Though it is easy to conduct, it is not applicable 
for on-board situation as the EV batteries are seldom fully 
discharged. Electrochemical impedance spectroscopy (EIS) 
detects the internal parameters of the battery to calculate 
the capacity based on the high degree of linear correlation 
between the capacity and the internal impedance parameter 
[18]. Nevertheless, EIS is fairly time-consuming and needs 
special instruments.

As for data-driven method [19-32], capacity is obtained 
based on a numerical relationship between it and some 
measured or derived variants. Discharge current, battery 
power and ambient temperature were used by artificial 
neural networks (ANNs) to estimate the capacity [33]. Lin 
et al. [21] employed probabilistic neural network (PNN) 
which used constant current time, instantaneous voltage 
drop at the start of discharge and open circuit voltage of a 
fully discharged battery after resting for one minute as 
input vectors to calculate capacity. In [23], current-voltage 
pairs were used to generate symbol strings to construct a 
special class of probabilistic finite state automata (PFSA) 
which is then used to acquire a pertinent feature to 
calculate the capacity. Widodo et al. [24] proposed an 
intelligent capacity estimation method by means of RVM 
and SVM with input of discharge voltage sample entropy. 
Laplacian Eigenmap was used in [34] to estimate capacity. 
Ambient temperature, charge current, discharge current, 
discharge cut-off voltage and end-of-life criteria were used 
to construct the relation between themselves and the 
capacity. Wang et al. [25] and Weng et al. [26] found the 
last peak of incremental voltage and incremental capacity 
have a high linear correlation with capacity, respectively, 
indicating incremental voltage and capacity can be used to 
estimate capacity. Zhang et al. [27] used adaptive multi-
kernel RVM to estimate on-board capacity based on six 
novel features extracted from charge and discharge period. 
Li et al. [35] considered the influence of temperature on the 
discharge capacity and therefore they constructed a model 
containing charge capacity, sample entropy of charge 
temperature and rest time to describe the capacity fading. 
Liu et al. [29] found the time interval corresponding to a 
certain discharge voltage difference has a high linear 
correlation with the capacity, from which the capacity can 
be acquired. They also found the series of discharge 
voltage difference of equal time interval has a highly linear 
correlation with the capacity [22]. Compared with model-
based and direct measurement method, data-driven method 
is much simpler and more accurate.

EVs on the road have a complex condition which is 
much complex than that in laboratory, causing discharge 
current and voltage to fluctuate seriously. Therefore, the 
applicability of above data-driven method based on the 
discharge phase is questionable for on-board usage. 
Consequently, more attention should be concentrated on 
the steady charge phase for on-board capacity estimation 
with the application of data-driven method.

Best to our knowledge, as for the data-driven method, 
there are merely two papers only utilizing the charge 
phase to calculate the capacity. Eddahech et al. [36] used 
exponential function to fit the current curves in constant 
voltage (CV) charge phase. They found the exponent in the 
fitted function has a strong linear correlation with capacity 
loss, by which the capacity can be calculated. In real 
applications, every CV charge phase should be fitted in a 
function, causing it very complex. Furthermore, in order to 
obtain a satisfying fitting precision, expensive instrument 
is indispensable to measure the weak current in the trickle 
charge phase. Hu et al. [37] employed sparse Bayesian 
learning to investigate the relationship between five 
variants (i.e., initial charge voltage, the constant current 
(CC) charge capacity, the CV charge capacity, the final 
charge voltage and the final charge current) and capacity. 
Though five variants may improve estimation accuracy, 
they hugely complicate the computation process. Therefore, 
it’s necessary to propose a method which just needs the 
data from the battery management system (BMS) to estimate
capacity. In addition, considering the BMS’ computing 
ability, the potential method should have a simple 
calculation process.

Based on experiment, it’s found constant current charge 
time (CCCT) and capacity have a strong linear correlation 
when the capacity is more than 80% of its rated value, after 
which the battery should be replaced. Thus this paper 
employs CCCT to estimate capacity. As demonstrated in 
[38, 39], ambient temperature (AT) has a significant effect 
on battery capacity. Hence, it’s reasonable to add AT for 
capacity estimation without causing much more calculation 
complexity. Relevance vector machine (RVM) is a machine 
learning technique with successful applications in model 
regression through nonlinear kernel functions and a 
number of identified relevance vectors [40]. The RVM 
owns excellent performance, such as high learning ability, 
easy training process, and prediction result with probability 
distribution, through kernel and statistical probability 
learning [41]. Besides, it has an outstanding computing 
accuracy and cuts down the computing burden significantly. 
Hence, RVM is gaining more and more attention in 
regression. Therefore, RVM is employed with the input of 
CCCT and AT for on-board capacity estimation of lithium-
ion batteries. In order to demonstrate its superiority, it is 
compared with the back-propagation neural network 
(BPNN) on estimation results.

The rest sections of this paper are organized in the 
following order: The RVM algorithm is introduced in 
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Section 2. Section 3 illustrates the feature extraction in the 
charge phase. Then, Section 4 makes capacity estimation 
and compares results between different methods. Finally, 
some conclusions are given in Section 5.

2. Relevance Vector Machine

2.1 Regression

Given a data set { } )(1
, ,  and 

N d
i i i ii
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formulated:
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To avoid severe over-fitting which is likely to appear 
during the process of maximum-likelihood estimation of 
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where the posterior covariance and mean of are 
respectively:

( )
12 Ts
--= +Σ Φ Φ A   (5)

2 Tm s -= ΣΦ t (6)

where ( )0 1diag , , , Na a a= ¼A . 
In order to obtain the most-probable point estimate MPα , 

the RVM ‘learning’ is to maximize the marginal likelihood 
with respect to a through a type-Ⅱmaximum likelihood 
procedure [42]. Many elements of the vector become 
infinity after marginal likelihood maximization algorithm 
which is detailedly introduced in [42]. Consequently, the 
corresponding elements in posterior w are extremely 
concentrated to zero, causing some useless basis functions 
to be pruned from the matrix Φ at last. As a result, those 
training samples that correspond to the non-zero weights 
become relevance vectors.

2.2 Estimation

After obtaining posterior distribution over w based on 
maximum-likelihood estimation of 2s an α , i.e.,

2
MPs

and MPα , the target t* corresponding to a new test point x* 
can be estimated through the distribution: 
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y* is the estimation of t* and the estimation confidence 
is determined by variance 2*s , which contains two 
variance components: the estimated noise on the data and 
that due to uncertainty in the calculation of the weights.

3. Feature Extraction

The dataset used in our work is obtained from data 
repository of the NASA Ames Prognostics Center of 
Excellence (PCoE) [43]. 18650-size lithium-ion batteries 
composed of LiNi0.8Co0.15Al0.05O2 were run through three 
different operational profiles: charge, discharge and 
impedance, described as follows:

Charge step: charging was conducted at a CC level of 
1.5 A until the charge voltage reached 4.2 V. Charging was 
continued in CV mode until the charge current dropped to 
20 mA.

Discharge step: discharging was conducted in CC mode 
until the discharge voltage reached a predefined cutoff 
voltage.

Impedance measurement: measurement was performed 
through an electrochemical impedance spectroscopy 
frequency sweep from 0.1 Hz to 5 kHz.

Repeated charge and discharge cycles resulted in 
accelerated aging of the batteries. The operation conditions 
are described detailedly in table 1. It’s noted that batteries 
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42, 43 and 44 were sometimes discharged at 2 A or 4 A.
It is quite interesting to find that the CCCT decreases 

with the usage of battery as shown in Fig. 2. However, the 
CCCT has different decrease trends at different temperatures
as shown in Fig. 3, which illustrates that whatever the 
temperature is, the CCCT and the capacity have a highly 
linear relationship as long as the capacity is more than 1.6 
Ah (80% of the rated capacity). It can also be observed that 
at different ambient temperature (AT), the same capacity 
corresponds to different constant current charge time. 
Therefore, CCCT is considered as an important feature 
with addition of AT to estimate capacity for lithium-ion 
batteries.

4. Capacity Estimation

Thirteen batteries in Table 1 provide offline data for 
RVM training to construct estimation model, and then the 
remaining one provides on-board data to validate the 
robustness and accuracy of the estimation model. This 
process is called training and validation (T-V). Battery 18, 
32 and 47 are used as the remaining one to conduct T-V 
three times, respectively.

4.1 Evaluation criterion

Three evaluation criteria are chosen to evaluate the 

performance and accuracy of the proposed method.
(1) Root mean square error (RMSE)
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where C is the actual capacity, Ĉ  is the estimated 
capacity, and C  is mean value of the C, n is the number 
of the on-board data used for validation.

RMSE is a good measure of local accuracy, used to 
compare the estimation errors of the model. The smaller 
the RMSE is, the better the estimation is. The fitness 
degree R2 indicates the fitness of data in a statistical model 
and gives information about the goodness of fitting of a 
model. The closer R2 is to 1, the more accurate the 
estimation is. MAE is used to quantify the error and 
smaller MAE means better estimation.

4.2 Estimation and discussion

CCCT and AT are input into RVM to estimate capacity. 
Before T-V, the outliers in the data are deleted and all the 
input and output data are normalized to range [0, 1].

It's necessary to mention that the kernel function used in 
this paper is Gaussian kernel function as shown:
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where g is the kernel width.
One of the most prominent contributions in this paper is 

that the AT is taken into consideration to estimate capacity. 
In order to demonstrate the effectiveness of our proposed 
method, the estimation result is compared with that only 

Fig. 2. Decreasing of constant current charge time with the 
increasing of cycles

Fig. 3. Influence of temperature on constant current charge 
time

Table 1. Operation conditions of 14 batteries

Battery 
number

Temperature 
(℃)

Cutoff voltage 
(V)

Discharge current 
(A)

42,43,44 4 2.2, 2.5, 2.7 2 and 4

46,47,48 4 2.2, 2.5, 2.7 1

5,6,7,18 24 2.7, 2.5, 2.2, 2.5 2

29,30,31,32 43 2.0, 2.2, 2.5, 2.7 4
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considering CCCT. The results of estimation and 
comparison are shown in Fig. 4-6 and table 2.

Fig. 4(b), Fig. 5(b) and Fig. 6(b) show that all the real 
capacity and the estimations made by RVM considering 
CCCT share the same attenuation trend. The mean absolute 
error and average R2 for the three estimations is 4.73% and 

0.9982, respectively. This implies the CCCT can really be 
used as the feature to calculate the on-board capacity.

All the estimations considering AT are much closer to 
the real capacity than that not considering AT. The average 
value of MAE is 3.75% when considering AT, which is 
decreased by 20.7% than that not considering AT. Clearly, 
all the 95% confidence intervals (CIs) in the upper figures 
of Fig. 4 to Fig. 6 are narrower than that in the lower ones. 
Knowing narrower width means smaller variance and 
better reliability, thus this phenomenon indicates that the 
consideration of AT improves the precision of capacity 
estimation. Therefore, considering AT is a good way to 
significantly improve the precision and accuracy of 
capacity estimation.

In table 2, all RMSE of estimation considering AT are 
smaller than that not considering AT, and all the R2 of the 
former are closer to 1 than the latter. More specifically, 
considering AT reduces the mean value of RMSE by 18.7% 
and improves the mean value of R2 by 0.1%. Thus it’s 

Fig. 4. Capacity estimation of battery 18 (a) considering 
ambient temperature; and (b) not considering 
ambient temperature

Fig. 5. Capacity estimation of battery 32 (a) considering 
ambient temperature; and (b) not considering 
ambient temperature

Table 2. Capacity estimation results for 3 batteries with or 
not considering temperature

Battery 
number

Considering
temperature?

R2 RMSE MAE

Yes 0.9993 0.0426 0.0349
18

No 0.9990 0.0485 0.0415

Yes 0.9997 0.0294 0.0242
32

No 0.9994 0.0404 0.0330

Yes 0.9976 0.0628 0.0535
47

No 0.9962 0.0769 0.0675

Fig. 6. Capacity estimation of battery 47 (a) considering 
ambient temperature; and (b) not considering 
ambient temperature



On-board Capacity Estimation of Lithium-ion Batteries Based on Charge Phase

738 │ J Electr Eng Technol.2018; 13(2): 733-741

again demonstrated that considering AT can make the 
capacity estimation much more accurate and reliable.

Based on the above discussion, we may safely draw the 
conclusion that the CCCT can be used to estimate on-board 
capacity of lithium-ion batteries and the consideration of 
ambient temperature can improve the estimation result 
significantly.

4.3 Comparison

In order to validate the superiority of the proposed 

method, capacity is also estimated by back-propagation 
neural network (BPNN) [32] which consists of an input 
layer, a 5-neuron hidden layer and an output layer. In this 
network, sigmoid and linear transfer functions are used in 
the hidden layer and output layer respectively. The results 
are shown in Fig. 7, Fig. 8 and Fig. 9 and compared with 
our method in Fig. 10.

Fig. 10 illustrates that all the R2 of the RVM are bigger 
than that of BPNN and both the RMSE and MAE are 
smaller than that of BPNN, and thus the RVM method is 
better than BPNN method when using the CCCT and AT as 
input, which is also validated by Fig. 7 to Fig. 9 as all the 
capacities estimated by RVM are much closer to the real 
one than the BPNN method.

Furthermore, capacity estimation made by an adaptive 
multi-kernel relevance machine (MKRVM) based on 
accelerated particle swarm optimization algorithm [27] is 
also compared with our method in table 3. It shows that
both R2 and RMSE of our method are larger than that of 
MKRVM, which indicates our method has a better overall 

Fig. 7. Comparison of capacity estimation of battery 18
between RVM and BPNN methods

Fig. 8. Comparison of capacity estimation of battery 32 
between RVM and BPNN methods

Fig. 9. Comparison of capacity estimation of battery 47 
between RVM and BPNN methods

Fig. 10. Comparison of capacity estimation performance 
between RVM and BPNN methods

Table 3. Comparison result of capacity estimation between 
MKRVM and our method (RVM)

Battery Method R2 RMSE MAE (%)

MKRVM 0.9898 0.0155 /
18

RVM 0.9993 0.0426 3.49

MKRVM 0.9870 0.0077 /
32

RVM 0.9997 0.0294 2.42

MKRVM 0.7613 0.0149 /
47

RVM 0.9976 0.0628 5.35
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estimation performance while a little worse local 
estimation performance. However, some features used in 
reference [27] including time interval of equal discharge 
voltage difference and discharge cutoff voltage are not 
applicable in real application due to the dramatically
dynamic condition in discharge phase as introduced before. 
Thus, considering the feasibility and accuracy, our method 
is still appealing for real application.

5. Conclusion

This paper suggests paying more attention on charge 
phase instead of discharge phase for on-board capacity 
estimation of lithium-ion batteries. It has been found that 
constant current charge time (CCCT) has a strong linear 
correlation with the capacity as long as the capacity is 
more than 80% of the battery’s rated value, and CCCT is 
applicable for on-board capacity estimation, which is 
validated by experiment via relevance vector machine 
(RVM). Adding the ambient temperature (AT) into the 
RVM input dramatically improves the estimation precision, 
reliability and robustness. Based on the comparison result, 
RVM is superior to back-propagation neural network 
(BPNN) for estimating capacity. Therefore, the proposed 
method is promising for on-board capacity estimation of 
lithium-ion batteries.

Although RVM was used by others to estimate state of 
health (SOH) of batteries, our method pays more attention 
on charging phase, which is exactly our suggestion for 
future SOH estimation. Meanwhile, demonstrated by our 
research, CCCT can be replaced by the charging time 
between two certain voltages depending on the types of 
battery and using condition. It is worth noting that the 
proposed method can be applied when the batteries are 
recharged through widely used constant current-constant 
voltage (CC-CV) charging protocol. The developed method 
may not be applicable to batteries on hybrid electric 
vehicles (HEVs) which are under the control of complex 
energy management strategies. In the future, we will find 
other techniques to replace the complex RVM method.
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