DOI QR코드

DOI QR Code

Two new triangular finite elements containing stable open cracks

  • Received : 2017.07.10
  • Accepted : 2017.09.18
  • Published : 2018.01.10

Abstract

The focus of this paper is on the elements with stable open cracks. To analyze plane problems, two triangular elements with three and six nodes are formulated using force method. Flexibility matrices of the elements are derived by combining the non-cracked flexibility and the additional one due to crack, which is computed by utilizing the local flexibility method. In order to compute the flexibility matrix of the intact element, a basic coordinate system without rigid body motions is required. In this paper, the basic system origin is located at the crack center and one of its axis coincides with the crack surfaces. This selection makes it possible to formulate elements with inclined cracks. It is obvious that the ability of the suggested elements in calculating accurate natural frequencies for cracked structures, make them applicable for vibration-based crack detection.

Keywords

References

  1. Akbas, S.D. (2014), "Wave propagation analysis of edge cracked circular beams under impact force", PloS One, 9(6), e100496. https://doi.org/10.1371/journal.pone.0100496
  2. Akbas, S.D. (2015a), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng. Mech., 54(3), 433-451. https://doi.org/10.12989/sem.2015.54.3.433
  3. Akbas, S.D. (2015b), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stab. Dyn., 15(04), 1450065. https://doi.org/10.1142/S0219455414500655
  4. Akbas, S.D. (2016a), "Post-buckling analysis of edge cracked columns under axial compression loads", Int. J. Appl. Mech., 8(8), 1650086. https://doi.org/10.1142/S1758825116500861
  5. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  6. Aliabadi, M.H. and Rooke, D.P. (1991), "The boundary element method", Numer. Fract. Mech., 90-139.
  7. Alwar, R.S. and Nambissan, K.N. (1983), "Three-dimensional finite element analysis of cracked thick plates in bending", Int. J. Numer. Meth. Eng., 19(2), 293-303. https://doi.org/10.1002/nme.1620190210
  8. Atluri, S.N., Kobayashi, A.S. and Nakagaki, M. (1975), "An assumed displacement hybrid finite element model for linear fracture mechanics", Int. J. Fract., 11(2), 257-271. https://doi.org/10.1007/BF00038893
  9. Banks-Sills, L. and Bortman, Y. (1984), "Reappraisal of the quarter-point quadrilateral element in linear elastic fracture mechanics", Int. J. Fract., 25(3), 169-180. https://doi.org/10.1007/BF01140835
  10. Banks-Sills, L. and Sherman, D. (1989), "On quarter-point three-dimensional finite elements in linear elastic fracture mechanics", Int. J. Fract., 41(3), 177-196. https://doi.org/10.1007/BF00018656
  11. Barsoum, R.S. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10(1), 25-37. https://doi.org/10.1002/nme.1620100103
  12. Behera, S., Sahu, S.K. and Asha, A.V. (2015), "Vibration analysis of laminated composite beam with transverse cracks", Adv. Struct. Eng., 67-75.
  13. Belytschko, T., Lu, Y.Y. and Gu, L. (1995), "Crack propagation by element-free Galerkin methods", Eng. Fract. Mech., 51(2), 295-315. https://doi.org/10.1016/0013-7944(94)00153-9
  14. Bordas, S.P., Rabczuk, T., Hung, N.X., Nguyen, V.P., Natarajan, S., Bog, T. and Hiep, N.V. (2010), "Strain smoothing in FEM and XFEM", Comput. Struct., 88(23), 1419-1443. https://doi.org/10.1016/j.compstruc.2008.07.006
  15. Bouboulas, A.S. and Anifantis, N.K. (2008), "Formulation of cracked beam element for analysis of fractured skeletal structures", Eng. Struct., 30(4), 894-901. https://doi.org/10.1016/j.engstruct.2007.05.025
  16. Christides, S. and Barr, A.D S. (1984), "One-dimensional theory of cracked Bernoulli-Euler beams", Int. J. Mech. Sci., 26(11-12), 639-648. https://doi.org/10.1016/0020-7403(84)90017-1
  17. De Luycker, E., Benson, D.J., Belytschko, T., Bazilevs, Y. and Hsu, M.C. (2011), "X-FEM in isogeometric analysis for linear fracture mechanics", Int. J. Numer. Meth. Eng., 87(6), 541-565. https://doi.org/10.1002/nme.3121
  18. Dolbow, J.O., Moes, H.N. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  19. Duflot, M. and Nguyen-Dang, H. (2004), "A meshless method with enriched weight functions for fatigue crack growth", Int. J. Numer. Meth. Eng., 59(14), 1945-1961. https://doi.org/10.1002/nme.948
  20. Fan, Y. and Wang, H. (2015), "Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments", Compos. Struct., 124, 35-43. https://doi.org/10.1016/j.compstruct.2014.12.050
  21. Fett, T. and Munz, D. (1997), Stress Intensity Factors and Weight Functions, Vol. 1, Computational Mechanics.
  22. Formica, G. and Milicchio, F. (2016), "Crack growth propagation using standard FEM", Eng. Fract. Mech., 165, 1-18. https://doi.org/10.1016/j.engfracmech.2016.08.015
  23. Gray, L.J., Phan, A.V., Paulino, G.H. and Kaplan, T. (2003), "Improved quarter-point crack tip element", Eng. Fract. Mech., 70(2), 269-283. https://doi.org/10.1016/S0013-7944(02)00027-9
  24. Guinea, G.V., Pastor, J.Y., Planas, J. and Elices, M. (1998), "Stress intensity factor, compliance and CMOD for a general three-point-bend beam", Int. J. Fract., 89(2), 103-116. https://doi.org/10.1023/A:1007498132504
  25. Henshell, R.D. and Shaw, K.G. (1975), "Crack tip finite elements are unnecessary", Int. J. Numer. Meth. Eng., 9(3), 495-507. https://doi.org/10.1002/nme.1620090302
  26. Hussain, M.A., Coffin, L.F. and Zaleski, K.A. (1981), "Three dimensional singular element", Comput. Struct., 13(5-6), 595-599. https://doi.org/10.1016/0045-7949(81)90020-1
  27. Ibrahim, A.M., Ozturk, H. and Sabuncu, M. (2013), "Vibration analysis of cracked frame structures", Struct. Eng. Mech., 45(1), 33-52. https://doi.org/10.12989/sem.2013.45.1.033
  28. Kisa, M. (2012), "Vibration and stability of axially loaded cracked beams", Struct. Eng. Mech., 44(3), 305-323. https://doi.org/10.12989/sem.2012.44.3.305
  29. Kisa, M. and Brandon, J. (2000), "The effects of closure of cracks on the dynamics of a cracked cantilever beam", J. Sound Vib., 238(1), 1-18. https://doi.org/10.1006/jsvi.2000.3099
  30. Kisa, M., Brandon, J. and Topcu, M. (1998), "Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods", Comput. Struct., 67(4), 215-223. https://doi.org/10.1016/S0045-7949(98)00056-X
  31. Krawczuk, M. (1993), "A rectangular plate finite element with an open crack", Comput. Struct., 46(3), 487-493. https://doi.org/10.1016/0045-7949(93)90218-3
  32. Lin, K.Y. and Mar, J.W. (1976), "Finite element analysis of stress intensity factors for cracks at a bi-material interface", Int. J. Fract., 12(4), 521-531. https://doi.org/10.1007/BF00034638
  33. Liu, Y. and Shu, D.W. (2015), "Effects of edge crack on the vibration characteristics of delaminated beams", Struct. Eng. Mech., 53(4), 767-780. https://doi.org/10.12989/sem.2015.53.4.767
  34. Ma, F.J. and Kwan, A.K.H. (2015), "Crack width analysis of reinforced concrete members under flexure by finite element method and crack queuing algorithm", Eng. Struct., 105, 209-219. https://doi.org/10.1016/j.engstruct.2015.10.012
  35. Manu, C. (1983), "Quarter-point elements for curved crack fronts", Comput. Struct., 17(2), 227-231. https://doi.org/10.1016/0045-7949(83)90010-X
  36. Mi, Y. and Aliabadi, M.H. (1992), "Dual boundary element method for three-dimensional fracture mechanics analysis", Eng. Anal. Bound. Elem., 10(2), 161-171. https://doi.org/10.1016/0955-7997(92)90047-B
  37. Millwater, H., Wagner, D., Baines, A., & Montoya, A. (2016), "A virtual crack extension method to compute energy release rates using a complex variable finite element method", Eng. Fract. Mech., 162, 95-111. https://doi.org/10.1016/j.engfracmech.2016.04.002
  38. Nguyen-Xuan, H., Liu, G.R., Bordas, S., Natarajan, S. and Rabczuk, T. (2013), "An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order", Comput. Meth. Appl. Mech. Eng., 253, 252-273. https://doi.org/10.1016/j.cma.2012.07.017
  39. Nguyen-Xuan, H., Liu, G.R., Nourbakhshnia, N. and Chen, L. (2012), "A novel singular ES-FEM for crack growth simulation", Eng. Fract. Mech., 84, 41-66. https://doi.org/10.1016/j.engfracmech.2012.01.001
  40. Okamura, H., Watanabe, K. and Takano, T. (1973), "Applications of the compliance concept in fracture mechanics", Progress in Flaw Growth and Fracture Toughness Testing, ASTM International.
  41. Pian, T.H.H. and Moriya, K. (1978), "Three-dimensional fracture analysis by assumed stress hybrid elements", Numer. Meth. Fract. Mech., 363-373.
  42. Pian, T.H.H., Tong, P. and Luk, C.H. (1971), Elastic Crack Analysis by a Finite Element Hybrid Method, Massachusetts Inst. of Tech. Cambridge.
  43. Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. (2017), "A cracked element based on the compliance concept", Theor. Appl. Fract. Mech., 92, 122-132. https://doi.org/10.1016/j.tafmec.2017.05.022
  44. Rezaiee-Pajand, M. and Mousavi, R., (2009), "Formulating a Triangular element with elasto-plastic crack", J. Civil Environ. Eng., Ferdowsi Univ. Mashhad, 1, 1-14. (in Persian)
  45. Saavedra, P.N. and Cuitino, L.A. (2001), "Crack detection and vibration behavior of cracked beams", Comput. Struct., 79(16), 1451-1459. https://doi.org/10.1016/S0045-7949(01)00049-9
  46. Salah, B., Hamoudi, B., Noureddine, B. and Mohamed, G. (2014), "Energy release rate for kinking crack using mixed finite element", Struct. Eng. Mech., 50(5), 665-677. https://doi.org/10.12989/sem.2014.50.5.665
  47. Schnack, E. and Wolf, M. (1978), "Application of displacement and hybrid strees methods to plane notch and crack problems", Int. J. Numer. Meth. Eng., 12(6), 963-975. https://doi.org/10.1002/nme.1620120608
  48. Shen, M.H. and Pierre, C. (1990), "Natural modes of Bernoulli-Euler beams with symmetric cracks", J. Sound Vib., 138(1), 115-134. https://doi.org/10.1016/0022-460X(90)90707-7
  49. Skrinar, M. (2013), "Computational analysis of multi-stepped beams and beams with linearly-varying heights implementing closed-form finite element formulation for multi-cracked beam elements", Int. J. Solid. Struct., 50(14), 2527-2541. https://doi.org/10.1016/j.ijsolstr.2013.04.005
  50. Tong, P., Pian, T.H.H. and Lasry, S.J. (1973), "A hybrid-element approach to crack problems in plane elasticity", Int. J. Numer. Meth. Eng., 7(3), 297-308. https://doi.org/10.1002/nme.1620070307
  51. Ventura, G., Gracie, R. and Belytschko, T. (2009), "Fast integration and weight function blending in the extended finite element method", Int. J. Numer. Meth. Eng., 77(1), 1-29. https://doi.org/10.1002/nme.2387
  52. Verhoosel, C.V., Scott, M.A., De Borst, R. and Hughes, T.J. (2011), "An isogeometric approach to cohesive zone modeling", Int. J. Numer. Meth. Eng., 87(1-5), 336-360. https://doi.org/10.1002/nme.3061
  53. Viola, E., Nobile, L. and Federici, L. (2002), "Formulation of cracked beam element for structural analysis", J. Eng. Mech., 128(2), 220-230. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(220)
  54. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143
  55. Zeng, J., Ma, H., Zhang, W. and Wen, B. (2017), "Dynamic characteristic analysis of cracked cantilever beams under different crack types", Eng. Fail. Anal., 74, 80-94. https://doi.org/10.1016/j.engfailanal.2017.01.005

Cited by

  1. A Force-Based Rectangular Cracked Element vol.13, pp.4, 2018, https://doi.org/10.1142/s1758825121500472
  2. A coupled experimental and numerical simulation of concrete joints' behaviors in tunnel support using concrete specimens vol.28, pp.2, 2021, https://doi.org/10.12989/cac.2021.28.2.189