DOI QR코드

DOI QR Code

Stochastic bending characteristics of finite element modeled Nano-composite plates

  • Chavan, Shivaji G. (Department of Mechanical Engineering, S.V. National Institute of Technology) ;
  • Lal, Achchhe (Department of Mechanical Engineering, S.V. National Institute of Technology)
  • 투고 : 2017.03.13
  • 심사 : 2017.09.22
  • 발행 : 2018.01.10

초록

This study reported, the effect of random variation in system properties on bending response of single wall carbon nanotube reinforced composite (SWCNTRC) plates subjected to transverse uniform loading is examined. System parameters such as the SWCNT armchair, material properties, plate thickness and volume fraction of SWCNT are modelled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behaviour of the SWCNTRC composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by the authors for the plate subjected to lateral loading is employed to obtain the mean and variance of the transverse deflection of the plate. The performance of the stochastic SWCNTRC composite model is demonstrated through a comparison of mean transverse central deflection with those results available in the literature and standard deviation of the deflection with an independent First Order perturbation Technique (FOPT), Second Order perturbation Technique (SOPT) and Monte Carlo simulation.

키워드

참고문헌

  1. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  2. Chakraborty, S., Mandal, B., Chowdhury, R. and Chakrabarti, A. (2016), "Stochastic free vibration analysis of laminated composite plates using polynomial correlated function expansion", Compos. Struct., 135, 236-249. https://doi.org/10.1016/j.compstruct.2015.09.044
  3. Chang, T.P. (2014), "Stochastic dynamic finite element analysis of bridge-vehicle system subjected to random material properties and loadings", Appl. Math. Comput., 242, 20-35.
  4. Chavan, S.G. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., 24(5), 537-548. https://doi.org/10.12989/SCS.2017.24.5.537
  5. Chavan, S.G. and Lal, A. (2017), "Bending analysis of laminated SWCNT reinforced functionally graded plate using FEM", Curv. Layer. Struct., 4(1), 134-145.
  6. Chavan, S.G. and Lal, A. (2017), "Dynamic bending response of SWCNT reinforced composite plates subjected to hygrothermo-mechanical loading", Comput. Concrete, 20(2), 229-246. https://doi.org/10.12989/CAC.2017.20.2.229
  7. Dey, S., Naskar, S., Mukhopadhyay, T., Gohs, U., Spickenheuer, A., Bittrich, L., ... and Heinrich, G. (2016), "Uncertain natural frequency analysis of composite plates including effect of noise - A polynomial neural network approach", Compos. Struct., 143, 130-142. https://doi.org/10.1016/j.compstruct.2016.02.007
  8. Gadade, A.M., Lal, A. and Singh, B.N. (2016), "Accrate stochastic initial and final faluer of laminated plate subjected to hygrothermo-mechanical loadings using of pucks failure criteria", Int. J. Mech. Sci., 114, 177-206. https://doi.org/10.1016/j.ijmecsci.2016.05.015
  9. Gadade, A.M., Lal, A. and Singh, B.N. (2016), "Finite element implementation of Pucks failure criterion for failure analysis of laminated plate subjected to biaxial loadings", Aerosp. Sci. Technol., 55, 227-241. https://doi.org/10.1016/j.ast.2016.05.001
  10. Gadade, A.M., Lal, A. and Singh, B.N. (2016), "Stochastic progressive failure analysis of laminated composite plates using Pucks failure criteria", Mech. Adv. Mater. Struct., 23(7), 739-757. https://doi.org/10.1080/15376494.2015.1029163
  11. Kundu, A., DiazDelaO, F.A., Adhikari, S. and Friswell, M.I. (2014), "A hybrid spectral and metamodeling approach for the stochastic finite element analysis of structural dynamic systems", Comput. Meth. Appl. Mech. Eng., 270, 201-219. https://doi.org/10.1016/j.cma.2013.11.013
  12. Kwon, Y.W. and Bang, H. (2011), The Finite Element Method Using MATLAB, 2ed Edition, CRC Press, New York.
  13. Lal, A. and Singh, B.N. (2009), "Stochastic nonlinear free vibration of laminated composite plates resting on elastic foundation in thermal environments", Comput. Mech., 44(1), 15-29. https://doi.org/10.1007/s00466-008-0352-5
  14. Lal, A. and Singh, B.N. (2010), "Stochastic free vibration of laminated composite plates in thermal environments", J. Thermoplas. Compos. Mater., 23(1), 57-77. https://doi.org/10.1177/0892705709103399
  15. Lal, A. and Singh, B.N. (2011), "Effect of random system properties on bending response of thermo-mechanically loaded laminated composite plates", Appl. Math. Model., 35, 5618-5635. https://doi.org/10.1016/j.apm.2011.05.014
  16. Lal, A., Singh, B.N. and Kale, S. (2011), "Stochastic post buckling analysis of laminated composite cylindrical shell panel subjected to hygro thermomechanical loading", Compos. Struct., 93, 1187-1200. https://doi.org/10.1016/j.compstruct.2010.11.005
  17. Lal, A., Singh, B.N. and Kumar, R. (2007), "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties", Struct. Eng. Mech., 27(2), 198-222.
  18. Lal, A., Singh, B.N. and Kumar, R. (2008), "Effect of random system properties on initial buckling of composite plates resting on elastic foundation", Int. J. Struct. Stab. Dyn., 8(1), 103-130. https://doi.org/10.1142/S0219455408002570
  19. Lal, A., Singh, B.N. and Patel, D. (2012), "Stochastic nonlinear failure analysis of laminated composite plates under compressive transverse loading", Compos. Struct., 94, 1211-1223. https://doi.org/10.1016/j.compstruct.2011.11.018
  20. Lei, Z. and Qiu, C. (2000), "Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation", Compos. Struct., 77, 651-657. https://doi.org/10.1016/S0045-7949(00)00019-5
  21. Li, J., Wu, G., Shen, R. and Hua, H. (2005), "Stochastic bendingtorsion coupled response of axially loaded slender compositethin-walled beams with closed cross-sections", Int. J. Mech. Sci., 47, 134-155. https://doi.org/10.1016/j.ijmecsci.2004.10.008
  22. Onkar, A.K., Upadhyay, C.S. and Yadav, D. (2007), "Probabilistic failure of laminated composite plates using the stochastic finite element method", Compos. Struct., 77, 79-91. https://doi.org/10.1016/j.compstruct.2005.06.006
  23. Pandit, M.K., Singh, B.N. and Sheikh, A.H. (2009), "Stochastic perturbation-based finite element for deflection statistics of soft core sandwich plate with random material properties", Int. J. Mech. Sci., 51, 363-371. https://doi.org/10.1016/j.ijmecsci.2009.03.003
  24. Rahmzadeh, A., Ghassemieh, M., Park, Y. and Abolmaali, A. (2016), "Effect of stiffeners on steel plate shear wall systems", Steel Compos. Struct., 20(3), 545-569. https://doi.org/10.12989/scs.2016.20.3.545
  25. Sasikumar, P., Suresh, R. and Gupta, S. (2015), "Stochastic model order reduction in uncertainty quantification of composite structures", Compos. Struct., 128, 21-34. https://doi.org/10.1016/j.compstruct.2015.03.045
  26. Sepahvand, K. (2016), "Spectral stochastic finite element vibration analysis of fiber-reinforced composites with random fiber orientation", Compos. Struct., 145, 119-128. https://doi.org/10.1016/j.compstruct.2016.02.069
  27. Shegokar, N.L. and Lal, A. (2013), "Stochastic nonlinear bending response of piezoelectric functionally graded beam subjected to thermoelectromechanical loadings with random material properties", Compos. Struct., 100, 17-33. https://doi.org/10.1016/j.compstruct.2012.12.032
  28. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube reinforced composites", J. Eng. Mater. Technol., 126(3), 250-257. https://doi.org/10.1115/1.1751182
  29. Singh, B.N. and Lal, A. (2010), "Stochastic analysis of laminated composite plates on elastic foundation: The cases of postbuckling behavior and nonlinear free vibration", Int. J. Press. Vess. Pip., 87, 559-574. https://doi.org/10.1016/j.ijpvp.2010.07.013
  30. Singh, B.N. and Lal, A. (2010), "Stochastic analysis of laminated composite plates on elastic foundation: The cases of postbuckling behavior and nonlinear free vibration", Int. J. Press. Vess. Pip., 87(10), 559-574. https://doi.org/10.1016/j.ijpvp.2010.07.013
  31. Singh, B.N., Bisht, A.K.S., Pandit, M.K. and Shukla, K.K. (2009), "Nonlinear free vibration analysis of composite plates with material uncertainties: A Monte Carlo simulation approach", J. Sound Vib., 324, 126-138. https://doi.org/10.1016/j.jsv.2009.01.046
  32. Singh, B.N., Iyengar, N.G.R. and Yadav, D. (2001), "Effects of random material properties on buckling of composite plates", J. Eng. Mech., 127(9), 873-879. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:9(873)
  33. Singh, B.N., Lal, A. and Kumar, R. (2009), "Post buckling response of laminated composite plate on elastic foundation with random system properties", Commun. Nonlin. Sci. Numer. Simul., 14, 284-300. https://doi.org/10.1016/j.cnsns.2007.08.005
  34. Singh, B.N., Umrao, A., Shukla, K.K. and Vyas, N. (2008), "Second-order statistics of natural frequencies of smart laminated composite plates with random material properties", Smart Struct. Syst., 4(1), 19-34. https://doi.org/10.12989/sss.2008.4.1.019
  35. Singh, B.N., Vyas, N. and Dash, P. (2009), "Stochastic free vibration analysis of smart random composite plates", Struct. Eng. Mech., 31(5), 481-506. https://doi.org/10.12989/sem.2009.31.5.481
  36. Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2001), "Natural frequencies of composite plates with random material properties using higher-order shear deformation theory", Int. J. Mech. Sci., 43, 2193-2214. https://doi.org/10.1016/S0020-7403(01)00046-7
  37. Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2001), "Stability analysis of laminated cylindrical panels with uncertain material properties", Compos. Struct., 54, 17-26. https://doi.org/10.1016/S0263-8223(01)00065-4
  38. Talha, M. and Singh, B.N. (2014), "Stochastic perturbation-based finite element for buckling statistics of FGM plates with uncertain material properties in thermal environments", Compos. Struct., 108, 823-833. https://doi.org/10.1016/j.compstruct.2013.10.013
  39. Talha, M. and Singh, B.N. (2015), "Stochastic vibration characteristics of finite element modeled functionally gradient plates", Compos. Struct., 130, 95-106. https://doi.org/10.1016/j.compstruct.2015.04.030
  40. Zhang, L.W. and Liew, K. M. (2015), "Large deflection analysis of FG-CNT reinforced Skew plates resting Pasternak foundations using an element-free approach", Compos. Struct., 132, 974-983. https://doi.org/10.1016/j.compstruct.2015.07.017