DOI QR코드

DOI QR Code

Single Pulse-Width-Modulation Strategy for Dual-Active Bridge Converters

  • Received : 2017.04.07
  • Accepted : 2017.08.29
  • Published : 2018.01.20

Abstract

This paper describes a single pulse-width modulation control strategy using the Single Pulse-Width Modulation (SPWM) method with a soft-switching technique for a wide range of output voltages from a bidirectional Dual-Active Bridge (DAB) converter. This method selects two typical inductor current waveforms for soft-switching, and proposes a rule that makes it possible to achieve soft-switching without any compensation algorithm from the waveforms. In addition, both the step-up and step-down conditions are analyzed. This paper verifies that the leakage inductance is independent from the rule, which makes it easier to apply in DAB converters. An integrated algorithm, which includes step-up and step-down techniques, is proposed. The results of experiments conducted on a 50-kW prototype are presented. The system efficiency is experimentally verified to be from 85.6% to 97.5% over the entire range.

Keywords

References

  1. S. P. Engel, N. Soltau, H. Stagge, and R.W.D. Doncker, “Improved instantaneous current control for high-power three-phase dual-active bridge DC-DC converters,” IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 4067-4077, Aug. 2014. https://doi.org/10.1109/TPEL.2013.2283868
  2. L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli, and D. Diaz, “Dual active bridge-based battery charger for plug-in hybrid electric vehicle with charging current containing low frequency ripple,” IEEE Trans. Power Electron, Vol. 30, No. 12, pp. 7299-7307, Dec. 2015. https://doi.org/10.1109/TPEL.2015.2413815
  3. S. Poshtkouhi and O. Trescases, "Flyback mode for improved low-power efficiency in the dual-active-bridge converter for bidirectional PV microinverters with integrated storage," IEEE Trans. Ind. Appl., Vol. 51, No. 4, pp. 3316-3324, Jul./Aug. 2015 https://doi.org/10.1109/TIA.2015.2409179
  4. H. Qin and J. W. Kimball, "Solid-state transformer architecture using AC-AC dual-active-bridge converter," IEEE Trans. Ind. Electron., Vol. 60, No. 9, pp. 3720-3730, Sep. 2013. https://doi.org/10.1109/TIE.2012.2204710
  5. Y. Shi, R. Li, Y. Xue, and H. Li, "Optimized operation of current-fed dual active bridge DC-DC converter for PV applications," IEEE Trans. Ind. Electron., Vol. 62, No. 11, pp. 6986-6995, Nov. 2015. https://doi.org/10.1109/TIE.2015.2432093
  6. W. W. A. G. Silva, P. F. Donoso-Garcia, S. I. Seleme Jr., T. R. Oliveira, C. H. G. Santos, and A. S. Bolzon, "Study of the application of bidirectional dual active bridge converters in DC nanogrid energy storage systems," Proc. Brazilian Power Electronics Conf., pp. 609-614, 2013.
  7. Y. A. Harrye, K. H. Ahmed, G. P. Adam, and A. A. Aboushady, "Comprehensive steady state analysis of bidirectional dual active bridge DC/DC converter using triple phase shift control," Proc. Int. Symposium on Industrial Electronics, pp. 437-442, 2014.
  8. M. Ryu, D. Jung, J. Baek, and H. Kim, "An optimized design of bi-directional dual active bridge converter for low voltage battery charger," Proc. Int. Power Electronics and Motion Control Conference and Exposition, pp. 117-183, 2014.
  9. L. Xue, D. Boroyevich, and P. Mattavelli, "Switching condition and loss modeling of GaN based dual active bridge converter for PHEV charger," Proc. IEEE Applied Power Electronics Conference and Exposition, pp. 1315-1322, 2016.
  10. S. P. Engel, M. Stieneker, N. Soltau, S. Rabiee, H. Stagge, and R. W. D. Doncker, “Comparison of the modular multilevel DC converter and the dual-active bridge converter for power conversion in HVDC and MVDC grids,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 124-137, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2310656
  11. H. Fan and H. Li, "High-frequency transformer isolated bidirectional DC-DC converter modules with high efficiency over wide load range for 20 kVA solid-state transformer," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3599-3608, Dec. 2011 https://doi.org/10.1109/TPEL.2011.2160652
  12. J. Zeng, W. Qiao, and L. Qu, "An isolated three-port bidirectional DC-DC converter for photovoltaic systems with energy storage," IEEE Trans. Ind. Appl., Vol. 51, No. 4, pp. 3493-3503, Jul./Aug. 2015. https://doi.org/10.1109/TIA.2015.2399613
  13. B. Zhao, Q. Yu, and W. Sun, "Extended-phase-shift control of isolated bidirectional DC-DC converter for power distribution in microgrid," IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4667-4680, Nov. 2012. https://doi.org/10.1109/TPEL.2011.2180928
  14. Z. Wang and H. Li, "An integrated three-port bidirectional DC-DC converter for PV application on a DC distribution system," IEEE Trans. Power Electron., Vol. 28, No. 10, pp. 4612-4624, Oct. 2012. https://doi.org/10.1109/TPEL.2012.2236580
  15. W. I. Choi, K. M. Rho, and B. H. Cho, “fundamental duty modulation of dual-active-bridge converter for wide-range operation,” IEEE Trans. Power Electron., Vol. 31, No. 6, pp. 4048-4064, Jun. 2015. https://doi.org/10.1109/TPEL.2015.2474135
  16. S. Inoue and H. Akagi, "A bidirectional DC-DC converter for an energy storage system with galvanic isolation," IEEE Trans. Power Electron., Vol. 22, No. 6, pp. 2299-2306, Jun. 2007. https://doi.org/10.1109/TPEL.2007.909248
  17. S. Inoue and H. Akagi, "A bidirectional isolated DC-DC converter as a core circuit of the next-generation medium-voltage power conversion system," IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 535-542, Mar. 2007. https://doi.org/10.1109/TPEL.2006.889939
  18. N. M. L. Tan, T. Abe, and H. Akagi, "Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system," IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1237-1248, Mar. 2012. https://doi.org/10.1109/TPEL.2011.2108317
  19. H. Akagi, T. Yamagishi, and N. M. L. Tan, "Power-loss breakdown of a 750-V 100-kW 20-kHz bidirectional isolated DC-DC converter using SiC-MOSFET/SBD dual modules," IEEE Trans. Ind. Appl., Vol. 51, No. 1, pp. 750-757, Jan./Feb. 2015.
  20. F. Krismer, "Modeling and optimization of bidirectional dual active bridge DC-DC converter topologies," Ph.D. dissertation, University of Technology Vienna, 2010.
  21. F. Krismer and J. W. Kolar, “Efficiency-optimized high-current dual active bridge converter for automotive applications,” IEEE Trans. Ind. Appl., Vol. 59, No. 7, pp. 2745-2760, Jul. 2012.
  22. A.K. Jain and R. Ayyanar, “PWM control of dual active bridge: comprehensive analysis and experimental verification,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1215-1227, Apr. 2011. https://doi.org/10.1109/TPEL.2010.2070519
  23. C. Nan, "Dual active bridge converter with PWM control in solid state transformer application," Master dissertation, University of Arizona State, pp. 4747-4753, 2012.
  24. G. Ortiz, H. Uemura, D. Bortis, J.W. Kolar, and O. Apeldoorn, “Modeling of soft-switching losses of IGBTs in high-power high-efficiency dual-active-bridge DC/DC converters,” IEEE Trans. Eletron. Devices, Vol. 60, No. 2, pp. 587-597, Feb. 2013. https://doi.org/10.1109/TED.2012.2223215
  25. H. Hoek, M. Neubert, and R. W. D. Doncker, "Enhanced modulation strategy for a three-phase dual active bridge - Boosting efficiency of an electric vehicle converter," IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5499-5507, Dec. 2013. https://doi.org/10.1109/TPEL.2013.2251905
  26. H. Qin and J.W. Kimball, "Generalized average modeling of dual active bridge DC-DC converter," IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 2078-2084, Apr. 2012. https://doi.org/10.1109/TPEL.2011.2165734
  27. F. Krismer and J.W. Kolar, “Accurate small-signal model for the digital control of an automotive bidirectional dual active bridge,” IEEE Trans. Power Electron., Vol. 24, No. 12, pp. 2756-2768, Dec. 2009. https://doi.org/10.1109/TPEL.2009.2027904
  28. G. G. Oggier, G. O. Garcia, and A. R. Oliva, "Modulation strategy to operate the dual active bridge DC-DC converter under soft switching in the whole operating range," IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1228-1236, Apr. 2012. https://doi.org/10.1109/TPEL.2010.2072966
  29. B. Zhao, Q. Song, W. Liu, G. Liu, and Y. Zhao, “Universal high-frequency-link characterization and practical fundamental-optimal strategy for dual-active-bridge DC-DC converter under PWM plus phase-shift control,” IEEE Trans. Power Electron., Vol. 30, No. 12, pp. 6488-6494, Dec. 2015. https://doi.org/10.1109/TPEL.2015.2430934
  30. B. J. Byen, K. P. Kang, Y. H. Cho, A. N. Yoo, "A high-efficiency variable modulation strategy for a dual-active-bridge converter with a wide operating range," Proc. Int. Conf. on Power Electronics and ECCE Asia(ICPE-ECCE Asia), pp. 240-245, 2015.
  31. N. Hou, W. H. Song, and M. Wu, "Minimum-current-stress scheme of dual active bridge DC-DC converter with unified phase-shift control," IEEE Trans. Power Electron., Vol. 31, No. 12, pp. 8552-8561, Dec. 2016. https://doi.org/10.1109/TPEL.2016.2521410
  32. H. Zhou and A. M. Khambadkone, "Hybrid modulation for dual-active bridge bidirectional converter with extended power range for ultracapacitor application," IEEE Trans. Ind. Appl., Vol. 45, No. 4, pp. 1434-1442, Apr. 2009. https://doi.org/10.1109/TIA.2009.2023493