DOI QR코드

DOI QR Code

Sliding Mode Control for Servo Motors Based on the Differential Evolution Algorithm

  • Yin, Zhonggang (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Gong, Lei (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Du, Chao (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Liu, Jing (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Zhong, Yanru (Department of Electrical Engineering, Xi'an University of Technology)
  • Received : 2017.05.26
  • Accepted : 2017.09.06
  • Published : 2018.01.20

Abstract

A sliding mode control (SMC) for servo motors based on the differential evolution (DE) algorithm, called DE-SMC, is proposed in this study. The parameters of SMC should be designed exactly to improve the robustness, realize the precision positioning, and reduce the steady-state speed error of the servo drive. The main parameters of SMC are optimized using the DE algorithm according to the speed feedback information of the servo motor. The most significant influence factor of the DE algorithm is optimization iteration. A suitable iteration can be achieved by the tested optimization process profile of the main parameters of SMC. Once the parameters of SMC are optimized under a convergent iteration, the system realizes the given performance indices within the shortest time. The experiment indicates that the robustness of the system is improved, and the dynamic and steady performance achieves the given performance indices under a convergent iteration when motor parameters mismatch and load disturbance is added. Moreover, the suitable iteration effectively mitigates the low-speed crawling phenomenon in the system. The correctness and effectiveness of DE-SMC are verified through the experiment.

Keywords

References

  1. Z. Li, J. Chen, G. Zhang, and M. Gan, “Adaptive robust control of servo mechanisms with compensation for nonlinearly parameterized dynamic friction,” IEEE Trans. Control Syst. Technol., Vol. 21, No. 1, pp. 194-202, Jan. 2013. https://doi.org/10.1109/TCST.2011.2171966
  2. J. Ye, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor drives,” IEEE Trans. Power. Electron., Vol. 30, No. 3, pp. 1457-1470, Mar. 2015. https://doi.org/10.1109/TPEL.2014.2316272
  3. J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Ind. Electron., Vol. 40, No. 1, pp. 2-22, Feb. 1993.
  4. H. Castaneda, F. Plestan, A. Chriette, and J. de Leon-Morales, “Continuous differentiator based on adaptive second-order sliding-mode control for a 3-DOF helicopter,” IEEE Trans. Ind. Electron., Vol. 63, No. 9, pp. 5786-5793, Sep. 2016. https://doi.org/10.1109/TIE.2016.2569058
  5. M. T. Angulo and R. V. Carrillo-Serrano, “Estimating rotor parameters in induction motors using high-order sliding mode algorithms,” IET Control Theory & Applications, Vol. 9, No. 4, pp. 573-578, Feb. 2015. https://doi.org/10.1049/iet-cta.2014.0110
  6. A. Saghafinia, H. W. Ping, M. N. Uddin, and K. S. Gaeid, “Adaptive fuzzy sliding-mode control into chattering-free IM drive,” IEEE Trans. Ind. Appl., Vol. 51, No. 1, pp. 692-701, Jan./Feb. 2015. https://doi.org/10.1109/TIA.2014.2328711
  7. D. Q. Dang, M. S. Rafaq, H. H. Choi, and J.-W. Jung, “Online parameter estimation technique for adaptive control applications of interior PM synchronous motor drives,” IEEE Trans. Ind. Electron., Vol. 63, No. 3, pp. 1438-1449, Mar. 2016. https://doi.org/10.1109/TIE.2015.2494534
  8. J. W. Jung, V. Q. Leu, T. D. Do, E.-K. Kim, and H. H. Choi, “Adaptive PID speed control design for permanent magnet synchronous motor drives,” IEEE Trans. Power. Electron., Vol. 30, No. 2, pp. 900-908, Feb. 2015. https://doi.org/10.1109/TPEL.2014.2311462
  9. Z. Qiu, M. Santillo, M. Jankovic, and J. Sun, “Composite adaptive internal model control and its application to boost pressure control of a turbocharged gasoline engine,” IEEE Trans. Control Syst. Technol., Vol. 23, No. 6, pp. 2306-2315, Nov. 2015. https://doi.org/10.1109/TCST.2015.2414400
  10. H. W. Chow and N. C. Cheung, “Disturbance and response time improvement of submicrometer precision linear motion system by using modified disturbance compensator and internal model reference control,” IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 139-150, Jan. 2013. https://doi.org/10.1109/TIE.2012.2185015
  11. Q. Zhu, Z. G. Yin, Y. Q. Zhang, J. Niu, Y. Li, and Y. Zhong, “Research on two-degree-of-freedom internal model control strategy for induction motor based on immune algorithm,” IEEE Trans. Ind. Electron., Vol. 63, No. 3, pp. 1981-1992, Mar. 2016. https://doi.org/10.1109/TIE.2015.2512222
  12. X. Sun, Z. Shi, L. Chen, and Z. Yang, “Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method,” IEEE Trans. Energy Convers., Vol. 31, No. 4, pp. 1539-1548, Dec. 2016. https://doi.org/10.1109/TEC.2016.2591925
  13. L. A. Castaneda, A. Luviano-Juarez, I. Chairez, “Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control,” IEEE Trans. Control Syst. Technol., Vol. 23, No. 4, pp. 1387-1398, Jul. 2015. https://doi.org/10.1109/TCST.2014.2367313
  14. B. Du, S. P. Wu, S. L. Han, and S. Cui, “Application of linear active disturbance rejection controller for sensorless control of internal permanent-magnet synchronous motorion,” IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 3019-3027, May 2016. https://doi.org/10.1109/TIE.2016.2518123
  15. X. Zhang and G. H. B. Foo, “A robust field-weakening algorithm based on duty ratio regulation for direct torque controlled synchronous reluctance motor,” IEEE/ASME Trans. Mechatronics, Vol. 21, No. 2, pp. 765-773, Apr. 2016. https://doi.org/10.1109/TMECH.2015.2469096
  16. X. G. Zhang, L. Sun, K. Zhao, and L. Sun, “Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques,” IEEE Trans. Power. Electron., Vol. 28, No. 3, pp. 1358-1365, Mar. 2013. https://doi.org/10.1109/TPEL.2012.2206610
  17. S. Li, M. M. Zhou, and X. H. Yu, “Design and implementation of terminal sliding mode control method for PMSM speed regulation system,” IEEE Trans. Ind. Informat., Vol. 9, No. 4, pp. 1879-1891, Nov. 2013. https://doi.org/10.1109/TII.2012.2226896
  18. J. Ye, P. Malysz, and A. Emadi, “A Fixed-switchingfrequency integral sliding mode current controller for switched reluctance motor drives,” IEEE J. Emerg. Sel. Topics Power Electron., Vol. 3, No. 2, pp. 381-394, Jun. 2015. https://doi.org/10.1109/JESTPE.2014.2357717
  19. J. F. Pan, S. W. Or, Y. Zou, and N. C. Cheung, "Slidingmode position control of medium-stroke voice coil motor based on system identification observer," IET Electric Power Applications, Vol. 9, No. 9, pp. 620-627, Nov. 2015. https://doi.org/10.1049/iet-epa.2014.0486
  20. S. Lin, Y. Cai, B. Yang, and W. D. Zhang, “Electrical line-shafting control for motor speed synchronisation using sliding mode controller and disturbance observer,” IET Control Theory & Applications, Vol. 11, No. 2, pp. 205-212, Jan. 2017. https://doi.org/10.1049/iet-cta.2016.0924
  21. M. Y. Chen and J. S. Lu, “High-precision motion control for a linear permanent magnet iron core synchronous motor drive in position platform,” IEEE Trans. Ind. Informat., Vol. 10, No. 1, pp. 99-108, Feb. 2014. https://doi.org/10.1109/TII.2013.2247044
  22. H. Y. Zhu, C. K. Pang, and T. J. Teo, “Integrated servo-mechanical design of a fine stage for a coarse/fine dual-stage positioning system,” IEEE/ASME Trans. Mechatronics, Vol. 21, No. 1, pp. 329-338, Feb. 2016. https://doi.org/10.1109/TMECH.2015.2440436
  23. C. S. Ting, Y. N. Chang, B. W. Shi, and J. F. Lieu, "Adaptive backstepping control for permanent magnet linear synchronous motor servo drive," IET Electric Power Applications, Vol. 9, No. 3, pp. 265-279, Mar. 2015. https://doi.org/10.1049/iet-epa.2014.0246