DOI QR코드

DOI QR Code

Fault Tolerant Operation of CHB Multilevel Inverters Based on the SVM Technique Using an Auxiliary Unit

  • Kumar, B. Hemanth (Depatrment of Electrical Engineering, Visvesvaraya National Institute of Technology (VNIT)) ;
  • Lokhande, Makarand M. (Depatrment of Electrical Engineering, Visvesvaraya National Institute of Technology (VNIT)) ;
  • Karasani, Raghavendra Reddy (Sagi RamaKrishnam Raju (SRKR) Engineering College) ;
  • Borghate, Vijay B. (Depatrment of Electrical Engineering, Visvesvaraya National Institute of Technology (VNIT))
  • Received : 2017.03.21
  • Accepted : 2017.09.06
  • Published : 2018.01.20

Abstract

In this paper, an improved Space Vector Modulation (SVM) based fault tolerant operation on a nine-level Cascaded H-Bridge (CHB) inverter with an additional backup circuit is proposed. Any type of fault in a power converter may result in a power interruption and productivity loss. Three different faults on H-bridge modules in all three phases based on the SVM approach are investigated with diagrams. Any fault in an inverter phase creates an unbalanced output voltage, which can lead to instability in the system. An additional auxiliary unit is connected in series to the three phase cascaded H-bridge circuit. With the help of this and the redundant switching states in SVM, the CHB inverter produces a balanced output with low harmonic distortion. This ensures high DC bus utilization under numerous fault conditions in three phases, which improves the system reliability. Simulation results are presented on three phase nine-level inverter with the automatic fault detection algorithm in the MATLAB/SIMULINK software tool, and experimental results are presented with DSP on five-level inverter to validate the practicality of the proposed SVM fault tolerance strategy on a CHB inverter with an auxiliary circuit.

Keywords

References

  1. J. S. Lai and F. Z. Peng, "Multilevel converters - A new breed of power converters," IEEE Trans. Ind. Appl., Vol. 32, No. 3, pp. 509-517, May/Jun.1996. https://doi.org/10.1109/28.502161
  2. J. Rodriguez, L. G. Franquelo, S. Kouro, J. I. Leon, R. C. Portillo, M. A. M. Prats, and M. A. Perez, "Multilevel converters: An enabling technology for high-power applications," Proceedings of the IEEE, Vol. 97, No. 11, pp. 1786-1817, Nov. 2009. https://doi.org/10.1109/JPROC.2009.2030235
  3. V. Dargahi, A. K. Sadigh, M. Abarzadeh, M. A. Pahlavani, and A. Shoulaie, “Flying capacitors reduction in an improved double flying capacitor multicell converter controlled by a modified modulation method,” IEEE Trans. Power Electron., Vol. 27, No. 9, pp. 3875-3887, Sep. 2012. https://doi.org/10.1109/TPEL.2012.2188647
  4. A. Nabae, I. Takahashi, and H. Akagi, "A new neutralpoint- clamped PWM inverter," IEEE Trans. Ind. Appl., Vol. 17, No. 5, pp. 518-523, Sep. 1981.
  5. L. K. Haw, M. S. A. Dahidah, and H. A. F. Almurib, "SHE-PWM cascaded multilevel inverter with adjustable dc voltage levels control for statcom applications," IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6433-6444, Dec. 2014. https://doi.org/10.1109/TPEL.2014.2306455
  6. C. D. Townsend, T. J. Summers, and R. E. Betz, “Phase-shifted carrier modulation techniques for cascaded H-bridge multilevel converters,” IEEE Trans. Ind. Electron., Vol. 62, No. 11, pp. 6684-6696, Nov. 2015. https://doi.org/10.1109/TIE.2015.2442516
  7. R. R. Karasani, V. B. Borghate, P. M. Meshram, H. M. Suryawanshi, and S. Sabyasachi, “A three phase hybrid cascaded modular multilevel inverter for renewable energy environment,” IEEE Trans. Power Electron., Vol. 32, No. 2, pp. 1070-1086, Feb. 2017. https://doi.org/10.1109/TPEL.2016.2542519
  8. R. R. Karasani, V. B. Borghate, P. M. Meshram, and H. M. Suryawanshi, “A modified switched-diode topology for cascaded multilevel inverters,” J. Power Electron., Vol. 16, No. 5, pp. 1706-1715, Sep. 2016. https://doi.org/10.6113/JPE.2016.16.5.1706
  9. J. Holtz, "Pulse width modulation-a survey," IEEE Trans. Ind. Electron., Vol. 39, No. 5, pp.410-420, Oct. 1992. https://doi.org/10.1109/41.161472
  10. P. Correa and J. Rodriguez, "Control strategy reconfiguration for a multilevel inverter operating with bypassed cells," in IEEE International Symposium on Industrial Electronics, pp. 3162-3167, Jun. 2007.
  11. E. R. da Silva, W. S. Lima, A. S. de Oliveira, C. B. Jacobina, and H. Razik, "Detection and compensation of switch faults in a three level inverter," in 37th IEEE Power Electronics Specialists Conference, pp. 1309-1315, Jun. 2006.
  12. W. G. Fenton, T. M. McGinnity, and L. P. Maguire, "Fault agnosis of electronic systems using intelligent techniques: a review," IEEE Trans. Syst., Man, Cybern., Part C (Applications and Reviews), Vol. 31, No. 3, pp. 269-281, Aug. 2001. https://doi.org/10.1109/5326.971655
  13. W. Zhang, D. Xu, P. N. Enjeti, H. Li, J. T. Hawke, and H. S. Krishnamoorthy, “Survey on fault-tolerant techniques for power electronic converters,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6319-6331, Dec. 2014. https://doi.org/10.1109/TPEL.2014.2304561
  14. B. Mirafzal, “Survey of fault-tolerance techniques for three-phase voltage source inverters,” IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5192-5202, Oct. 2014. https://doi.org/10.1109/TIE.2014.2301712
  15. S. Wei, B. Wu, S. Rizzo, and N. Zargari, "Comparison of control schemes for multilevel inverter with faulty cells," in 30th Annual Conference of IEEE Industrial Electronics Society (IECON), Vol. 2, pp. 1817-1822, Nov. 2004.
  16. A. Mora, P. Lezana, and J. Juliet, "Control scheme for an induction motor fed by a cascade multicell converter under internal fault," IEEE Trans. Ind. Electron., Vol. 61, No. 11, pp. 5948-5955, Nov. 2014. https://doi.org/10.1109/TIE.2014.2308143
  17. W. Song and A. Q. Huang, “Fault-tolerant design and control strategy for cascaded H-bridge multilevel converter-based STATCOM,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2700-2708, Aug. 2010. https://doi.org/10.1109/TIE.2009.2036019
  18. H. Iman-Eini, S. Farhangi, J. L. Schanen, and M. Khakbazan-Fard, "A fault-tolerant control strategy for cascaded h-bridge multilevel rectifiers," J. Power Electron., Vol. 10, No. 1, pp.34-42, Jan. 2010. https://doi.org/10.6113/JPE.2010.10.1.034
  19. D. Eaton, J. Rama, and P. Hammond, “Neutral shift [five years of continuous operation with adjustable frequencydrives,” IEEE Ind. Appl. Mag., Vol. 9, No. 6, pp. 40-49, Nov./Dec. 2003.
  20. S. Wei, B. Wu, S. Rizzo, and N. Zargari, "Comparison of control schemes for multilevel inverter with faulty cells," in 30th Annual Conference of IEEE Industrial Electronics Society, Vol. 2, pp. 1817-1822, Nov. 2004.
  21. S. Wei, B. Wu, F. Li, and X. Sun, "Control method for cascaded H-bridge multilevel inverter with faulty power cells," in Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, Vol. 1, pp. 261-267, Feb. 2003.
  22. Z. Ji, J. Zhao, Y. Sun, X. Yao, and Z. Zhu, “Fault-tolerant control of cascaded H-bridge converters using double zero-sequence voltage injection and DC voltage optimization,” J. Power Electron., Vol. 14, No. 5, pp. 946-956, Sep. 2014. https://doi.org/10.6113/JPE.2014.14.5.946
  23. P. Moamaei, H. Mahmoudi, and R. Ahmadi, "Fault-tolerant operation of cascaded H-Bridge inverters using one redundnt cell," in IEEE Power and Energy Conference at Illinois (PECI), pp. 1-5, Feb. 2015.
  24. M. Aleenejad, H. Iman-Eini, and S. Farhangi, “Modified space vector modulation for fault-tolerant operation of multilevel cascaded H-bridge inverters,” IET Power Electron., Vol. 6, No. 4, pp. 742-751, Apr. 2013. https://doi.org/10.1049/iet-pel.2012.0543
  25. P. Lezana, R. Aguilera, and J. Rodriguez, “Fault detection on multicell converter based on output voltage frequency analysis,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 2275-2283, Jun. 2009. https://doi.org/10.1109/TIE.2009.2013845