FOURIER SERIES OF HIGHER-ORDER EULER FUNCTIONS AND THEIR APPLICATIONS

Dae San Kim and Taekyun Kim

Abstract

In this paper, we give some identities for the higher-order Euler functions arising from the Fourier series of them. In addition, we investigate some formulae related to Bernoulli functions which are derived from our identities.

1. Introduction

As is well known, the Euler polynomials are defined by the generating function

$$
\begin{equation*}
\frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}, \quad(\text { see }[1-20]) \tag{1.1}
\end{equation*}
$$

When $x=0, E_{n}=E_{n}(0)$ are called Euler numbers. For any real x, we define

$$
\begin{equation*}
\langle x\rangle=x-[x] \in[0,1) . \tag{1.2}
\end{equation*}
$$

Note that $\langle x\rangle$ is the fractional part of x. Then $E_{m}(\langle x\rangle)$ are functions defined on $(-\infty, \infty)$ and periodic with period 1, which are called Euler functions. For $m \in \mathbb{N}$, the Fourier series of $E_{m}(\langle x\rangle)$ is given by

$$
\begin{equation*}
E_{m}(\langle x\rangle)=\sum_{n=-\infty}^{\infty} a_{n}^{(m)} e^{(2 n+1) \pi i x}, \quad\left(a_{n}^{(m)} \in \mathbb{C}\right), \quad(\text { see }[9,10,13]) \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}^{(m)}=\int_{0}^{1} E_{m}(x) e^{-(2 n+1) \pi i x} d x, \quad(i=\sqrt{-1}) . \tag{1.4}
\end{equation*}
$$

From (1.4), we note that

$$
\begin{equation*}
a_{n}^{(m)}=\frac{m}{(2 n+1) \pi i} a_{n}^{(m-1)}=\frac{m(m-1)}{((2 n+1) \pi i)^{2}} a_{n}^{(m-2)}=\cdots=\frac{m!a_{n}^{(1)}}{((2 n+1) \pi i)^{m-1}} . \tag{1.5}
\end{equation*}
$$

Received October 26, 2016; Accepted February 13, 2017.
2010 Mathematics Subject Classification. 11B68, 42A16.
Key words and phrases. Fourier series, Euler polynomials, Euler functions.

Thus, by (1.5), we get

$$
\begin{equation*}
a_{n}^{(m)}=2 \frac{m!}{((2 n+1) \pi i)^{m+1}}, \quad(m \in \mathbb{N}), \quad(\text { see }[9,10]) \tag{1.6}
\end{equation*}
$$

So, from (1.3) and (1.6), we have

$$
\begin{equation*}
E_{m}(\langle x\rangle)=2 m!\sum_{n=-\infty}^{\infty} \frac{e^{(2 n+1) \pi i x}}{((2 n+1) \pi i)^{m+1}}, \quad(\text { see }[9,10]) \tag{1.7}
\end{equation*}
$$

By (1.7), we get

$$
\begin{equation*}
E_{m}=2 m!\sum_{n=-\infty}^{\infty} \frac{1}{((2 n+1) \pi i)^{m+1}}, \quad(m \in \mathbb{N} \cup\{0\}) \tag{1.8}
\end{equation*}
$$

Thus, from (1.8), we have

$$
\begin{equation*}
E_{2 m+1}=(-1)^{m+1} 2 \cdot \frac{(2 m+1)!}{\pi^{2 m+2}} \sum_{n=-\infty}^{\infty} \frac{1}{(2 n+1)^{2 m+2}}, \quad(\text { see }[9,10,13]) \tag{1.9}
\end{equation*}
$$

By (1.9), we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2 m+2}}=(-1)^{m+1} \frac{E_{2 m+1}}{4(2 m+1)!} \pi^{2 m+2}, \quad(\text { see }[9,10]) \tag{1.10}
\end{equation*}
$$

For $r \in \mathbb{N}$, the higher-order Euler polynomials are defined by the generating function

$$
\begin{equation*}
\left(\frac{2}{e^{t}+1}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} E_{n}^{(r)}(x) \frac{t^{n}}{n!}, \quad(\text { see }[9,10,13,14,17,19]) \tag{1.11}
\end{equation*}
$$

When $x=0, E_{n}^{(r)}=E_{n}^{(r)}(0)$ are called the higher-order Euler numbers (see [17, 19]). For any real number $x, E_{m}^{(r)}(\langle x\rangle)$ are functions defined on $(-\infty, \infty)$ and periodic with period 1, which are called Euler functions of order r. In this paper, we give some new identities of the higher-order Euler functions which are derived from the Fourier series of $E_{n}^{(r)}(\langle x\rangle)$. In addition, we investigate some formulae related to Bernoulli functions.

2. Fourier series of higher-order Euler functions

From (1.11), we note that

$$
\begin{equation*}
E_{m}^{(r)}(x+1)+E_{m}^{(r)}(x)=2 E_{m}^{(r-1)}(x), \quad(m \geq 0) \tag{2.1}
\end{equation*}
$$

Indeed

$$
\begin{align*}
\sum_{m=0}^{\infty} E_{m}^{(r)}(x+1) \frac{t^{m}}{m!} & =\left(\frac{2}{e^{t}+1}\right)^{r} e^{(x+1) t}=\left(\frac{2}{e^{t}+1}\right)^{r}\left(e^{t}+1-1\right) e^{x t} \\
& =2\left(\frac{2}{e^{t}+1}\right)^{r-1} e^{x t}-\left(\frac{2}{e^{t}+1}\right)^{r} e^{x t} \tag{2.2}\\
& =\sum_{m=0}^{\infty}\left(2 E_{m}^{(r-1)}(x)-E_{m}^{(r)}(x)\right) \frac{t^{m}}{m!}
\end{align*}
$$

For $x=0$ in (2.1), we have

$$
\begin{equation*}
E_{m}^{(r)}(1)=2 E_{m}^{(r-1)}(0)-E_{m}^{(r)}(0), \quad(m \geq 0) \tag{2.3}
\end{equation*}
$$

Thus, by (2.3), we get

$$
\begin{equation*}
E_{m}^{(r)}(0)=E_{m}^{(r)}(1) \Leftrightarrow E_{m}^{(r)}(0)=E_{m}^{(r-1)}(0) \tag{2.4}
\end{equation*}
$$

Assume that $m \geq 1$ and $r \geq 1$. Then $E_{m}^{(r)}(\langle x\rangle)$ is piecewise C^{∞}. In addition, $E_{m}^{(r)}(\langle x\rangle)$ is continuous for those (r, m) with $E_{m}^{(r)}(0)=E_{m}^{(r-1)}(0)$, and discontinuous with jump discontinuities at integers for those (r, m) with $E_{m}^{(r)}(0) \neq$ $E_{m}^{(r-1)}(0)$. The Fourier series of $E_{m}^{(r)}(\langle x\rangle)$ is

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} C_{n}^{(r, m)} e^{2 \pi i n x} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{align*}
C_{n}^{(r, m)} & =\int_{0}^{1} E_{m}^{(r)}(\langle x\rangle) e^{-2 \pi i n x} d x=\int_{0}^{1} E_{m}^{(r)}(x) e^{-2 \pi i n x} d x \\
& =\frac{1}{m+1}\left[E_{m+1}^{(r)}(x) e^{-2 \pi i n x}\right]_{0}^{1}+\frac{2 \pi i n}{m+1} \int_{0}^{1} E_{m+1}^{(r)}(x) e^{-2 \pi i n x} d x \tag{2.6}\\
& =\frac{1}{m+1}\left[E_{m+1}^{(r)}(1)-E_{m+1}^{(r)}(0)\right]+\frac{2 \pi i n}{m+1} C_{n}^{(r, m+1)} \\
& =\frac{2}{m+1}\left(E_{m+1}^{(r-1)}(0)-E_{m+1}^{(r)}(0)\right)+\frac{2 \pi i n}{m+1} C_{n}^{(r, m+1)}
\end{align*}
$$

Replacing m by $m-1$ in (2.6), we have

$$
\begin{equation*}
\frac{2 \pi i n}{m} C_{n}^{(r, m)}=C_{n}^{(r, m-1)}+\frac{2}{m}\left(E_{m}^{(r)}(0)-E_{m}^{(r-1)}(0)\right) \tag{2.7}
\end{equation*}
$$

Case 1. Let $n \neq 0$. Then we have

$$
\begin{align*}
C_{n}^{(r, m)}= & \frac{m}{2 \pi i n} C_{n}^{(r, m-1)}+\frac{1}{\pi i n}\left(E_{m}^{(r)}(0)-E_{m}^{(r-1)}(0)\right) \\
= & \frac{m}{2 \pi i n}\left(\frac{m-1}{2 \pi i n} C_{n}^{(r, m-2)}+\frac{1}{\pi i n}\left(E_{m-1}^{(r)}(0)-E_{m-1}^{(r-1)}(0)\right)\right) \\
(2.8)= & +\frac{1}{\pi i n}\left(E_{m}^{(r)}(0)-E_{m}^{(r-1)}(0)\right) \tag{2.8}
\end{align*}
$$

$$
\begin{aligned}
= & \frac{m(m-1)}{(2 \pi i n)^{2}} C_{n}^{(r, m-2)}+\frac{m}{2} \frac{1}{(\pi i n)^{2}}\left(E_{m-1}^{(r)}(0)-E_{m-1}^{(r-1)}(0)\right) \\
& +\frac{1}{\pi i n}\left(E_{m}^{(r)}(0)-E_{m}^{(r-1)}(0)\right) \\
= & \frac{m(m-1)}{(2 \pi i n)^{2}}\left(\frac{m-2}{2 \pi i n} C_{n}^{(r, m-3)}+\frac{1}{\pi i n}\left(E_{m-2}^{(r)}(0)-E_{m-2}^{(r-1)}(0)\right)\right) \\
& +\frac{m}{2} \frac{1}{(\pi i n)^{2}}\left(E_{m-1}^{(r)}(0)-E_{m-1}^{(r-1)}(0)\right)+\frac{1}{\pi i n}\left(E_{m}^{(r)}(0)-E_{m}^{(r-1)}(0)\right) \\
= & \frac{m(m-1)(m-2)}{(2 \pi i n)^{3}} C_{n}^{(r, m-3)} \\
& +\frac{m(m-1)}{2^{2}} \frac{1}{(\pi i n)^{3}}\left(E_{m-2}^{(r)}(0)-E_{m-2}^{(r-1)}(0)\right) \\
& +\frac{m}{2} \frac{1}{(\pi i n)^{2}}\left(E_{m-1}^{(r)}(0)-E_{m-1}^{(r-1)}(0)\right)+\frac{1}{\pi i n}\left(E_{m}^{(r)}(0)-E_{m}^{(r-1)}(0)\right) \\
= & \cdots \\
= & \frac{m!}{(2 \pi i n)^{m-1}} C_{n}^{(r, 1)}+\sum_{k=1}^{m-1} \frac{(m)_{k-1}}{2^{k-1}} \frac{1}{(\pi i n)^{k}}\left(E_{m-k+1}^{(r)}(0)-E_{m-k+1}^{(r-1)}(0)\right)
\end{aligned}
$$

where $(x)_{n}=x(x-1) \cdots(x-n+1)$ for $n \geq 1$, and $(x)_{0}=1$. Here we note that

$$
\begin{align*}
C_{n}^{(r, 1)} & =\int_{0}^{1} E_{1}^{(r)}(x) e^{-2 \pi i n x} d x=\int_{0}^{1}\left(x+E_{1}^{(r)}\right) e^{-2 \pi i n x} d x \\
& =\int_{0}^{1} x e^{-2 \pi i n x} d x+E_{1}^{(r)} \int_{0}^{1} e^{-2 \pi i n x} d x \tag{2.9}\\
& =-\frac{1}{2 \pi i n}\left[x e^{-2 \pi i n x}\right]_{0}^{1}+\frac{1}{2 \pi i n x} \int_{0}^{1} e^{-2 \pi i n x} d x \\
& =-\frac{1}{2 \pi i n}
\end{align*}
$$

Thus, by (2.8) and (2.9), we get

$$
\begin{align*}
C_{n}^{(r, n)} & =\frac{-m!}{(2 \pi i n)^{m}}+\sum_{k=1}^{m-1} \frac{2(m)_{k-1}}{(2 \pi i n)^{k}}\left(E_{m-k+1}^{(r)}(0)-E_{m-k+1}^{(r-1)}(0)\right) \tag{2.10}\\
& =\sum_{k=1}^{m} \frac{2(m)_{k-1}}{(2 \pi i n)^{k}}\left(E_{m-k+1}^{(r)}(0)-E_{m-k+1}^{(r-1)}(0)\right)
\end{align*}
$$

Here we used the fact that $E_{n}^{(r)}(0)=\sum_{l_{1}+\cdots+l_{r}=n}\binom{n}{l_{1}, \ldots, l_{r}} E_{l_{1}}(0) \cdots E_{l_{r}}(0)$.
Case 2. Let $n=0$. Then, we note that

$$
\begin{equation*}
C_{0}^{(r, m)}=\int_{0}^{1} E_{m}^{(r)}(x) d x=\frac{1}{m+1}\left[E_{m+1}^{(r)}(x)\right]_{0}^{1} \tag{2.11}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{1}{m+1}\left(E_{m+1}^{(r)}(1)-E_{m+1}^{(r)}(0)\right) \\
& =\frac{2}{m+1}\left(E_{m+1}^{(r-1)}(0)-E_{m+1}^{(r)}(0)\right) .
\end{aligned}
$$

Assume first that $E_{m}^{(r)}(0)=E_{m}^{(r-1)}(0)$. Then $E_{m}^{(r)}(1)=E_{m}^{(r)}(0)$ and $m \geq 2$. Note that $E_{m}^{(r)}(\langle x\rangle)$ is piecewise C^{∞} and continuous. Hence the Fourier series of $E_{m}^{(r)}(\langle x\rangle)$ converges uniformly to $E_{m}^{(r)}(\langle x\rangle)$, and

$$
\begin{align*}
E_{m}^{(r)}(\langle x\rangle)= & \frac{2}{m+1}\left(E_{m+1}^{(r-1)}(0)-E_{m+1}^{(r)}(0)\right) \tag{2.12}\\
& +\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty}\left(\sum_{k=1}^{m} \frac{2(m)_{k-1}}{(2 \pi i n)^{k}}\left(E_{m-k+1}^{(r)}(0)-E_{m-k+1}^{(r-1)}(0)\right)\right) e^{2 \pi i n x} .
\end{align*}
$$

Before proceedings further, we recall the following facts about Bernoulli functions $B_{n}(\langle x\rangle)$:

$$
\begin{equation*}
B_{m}(\langle x\rangle)=-m!\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{e^{2 \pi i n x}}{(2 \pi i n)^{m}}, \quad(m \geq 2), \quad(\text { see }[1,18]) \tag{2.13}
\end{equation*}
$$

and

$$
-\sum_{\substack{n=-\infty \tag{2.14}\\
n \neq 0}}^{\infty} \frac{e^{2 \pi i n x}}{2 \pi i n}=\left\{\begin{array}{ll}
B_{1}(\langle x\rangle) & \text { for } x \notin \mathbb{Z} \\
0 & \text { for } x \in \mathbb{Z},
\end{array} \quad(\text { see }[1,18])\right.
$$

The series in (2.13) converges uniformly, but that in (2.3) converges only pointwise. We note that (2.12) can be rewritten as
$E_{m}^{(r)}(\langle x\rangle)=\frac{2}{m+1}\left(E_{m+1}^{(r-1)}(0)-E_{m+1}^{(r)}(0)\right)$

$$
\begin{aligned}
& +\sum_{k=1}^{m} \frac{2(m)_{k-1}}{k!}\left(E_{m-k+1}^{(r-1)}(0)-E_{m-k+1}^{(r)}(0)\right) \cdot\left(-k!\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \frac{e^{2 \pi i n x}}{(2 \pi i n)^{k}}\right) \\
= & \frac{2}{m+1}\left(E_{m+1}^{(r-1)}(0)-E_{m+1}^{(r)}(0)\right)
\end{aligned}
$$

$$
+\sum_{k=2}^{m} \frac{2(m)_{k-1}}{k!}\left(E_{m-k+1}^{(r-1)}(0)-E_{m-k+1}^{(r)}(0)\right) B_{k}(\langle x\rangle)
$$

$$
+2\left(E_{m}^{(r-1)}(0)-E_{m}^{(r)}(0)\right) \times \begin{cases}B_{1}(\langle x\rangle) & \text { for } x \notin \mathbb{Z} \\ 0 & \text { for } x \in \mathbb{Z}\end{cases}
$$

Therefore, we obtain the following theorem.

Theorem 2.1. Let $m \geq 2, r \geq 1$. Assume that $E_{m}^{(r)}(0)=E_{m}^{(r-1)}(0)$,
(a) $E_{m}^{(r)}(\langle x\rangle)$ has the Fourier series expansion

$$
\begin{aligned}
E_{m}^{(r)}(\langle x\rangle)= & \frac{2}{m+1}\left(E_{m+1}^{(r-1)}(0)-E_{m+1}^{(r)}(0)\right) \\
& +\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty}\left(\sum_{k=1}^{m} \frac{2(m)_{k-1}}{(2 \pi i n)^{k}}\left(E_{m-k+1}^{(r)}(0)-E_{m-k+1}^{(r-1)}(0)\right)\right) e^{2 \pi i n x}
\end{aligned}
$$

for all $x \in(-\infty, \infty)$, where the convergence is uniform.
(b) $E_{n}^{(r)}(\langle x\rangle)=\frac{2}{m+1}\left(E_{m+1}^{(r-1)}(0)-E_{m+1}^{(r)}(0)\right)$

$$
+\sum_{k=2}^{m} \frac{2(m)_{k-1}}{k!}\left(E_{m-k++1}^{(r-1)}(0)-E_{m-k+1}^{(r)}(0)\right) B_{k}(\langle x\rangle)
$$

for all $x \in(-\infty, \infty)$, where $B_{k}(\langle x\rangle)$ is the Bernoulli function.
Assume next that $E_{m}^{(r)}(0) \neq E_{m}^{(r-1)}(0)$. Then we note that $E_{m}^{(r)}(1) \neq$ $E_{m}^{(r)}(0)$, and hence $E_{m}^{(r)}(\langle x\rangle)$ is piecewise C^{∞} and discontinuous with jump discontinuities at integers. Thus the Fourier series of $E_{m}^{(r)}(\langle x\rangle)$ converges pointwise to $E_{m}^{(r)}(\langle x\rangle)$ for $x \notin \mathbb{Z}$, and converges to $\frac{1}{2}\left(E_{m}^{(r)}(0)+E_{m}^{(r)}(1)\right)=E_{m}^{(r-1)}(0)$ for $x \in \mathbb{Z}$. Thus, we obtain the following theorem.

Theorem 2.2. Let $m \geq 1, r \geq 1$. Assume that $E_{m}^{(r)}(1) \neq E_{m}^{(r-1)}(0)$.
(a) $\frac{2}{m+1}\left(E_{m+1}^{(r-1)}(0)-E_{m+1}^{(r)}(0)\right)$

$$
\begin{aligned}
& +\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty}\left(\sum_{k=1}^{m} \frac{2(m)_{k-1}}{(2 \pi i n)^{k}}\left(E_{m-k+1}^{(r)}(0)-E_{m-k+1}^{(r-1)}(0)\right)\right) e^{2 \pi i n x} \\
= & \begin{cases}E_{m}^{(r)}(\langle x\rangle) & \text { for } x \notin \mathbb{Z} \\
E_{m}^{(r-1)}(0) & \text { for } x \in \mathbb{Z} .\end{cases}
\end{aligned}
$$

Here the convergence is pointwise.
(b) $\frac{2}{m+1}\left(E_{m+1}^{(r-1)}(0)-E_{m+1}^{(r)}(0)\right)$

$$
+\sum_{k=1}^{m} \frac{2(m)_{k-1}}{k!}\left(E_{m-k+1}^{(r-1)}(0)-E_{m-k+1}^{(r)}(0)\right) B_{k}(\langle x\rangle)
$$

and

$$
=E_{m}^{(r)}(\langle x\rangle) \quad \text { for } x \notin \mathbb{Z}
$$

$$
\begin{aligned}
& \frac{2}{m+1}\left(E_{m+1}^{(r-1)}(0)-E_{m+1}^{(r)}(0)\right) \\
& +\sum_{k=2}^{m} \frac{2(m)_{k-1}}{k!}\left(E_{m-k+1}^{(r-1)}(0)-E_{m-k+1}^{(r)}(0)\right) B_{k}(\langle x\rangle)
\end{aligned}
$$

$$
=E_{m}^{(r-1)}(0) \quad \text { for } x \in \mathbb{Z}
$$

Here $B_{k}(\langle x\rangle)$ is the Bernoulli function.
Remark. Note that

$$
\begin{aligned}
\frac{1}{1+e^{-x}} & =\sum_{n=0}^{\infty} e^{-n x}(-1)^{n}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{k}\right)^{n}(-1)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(\sum_{a_{1}+a_{2}+\cdots=n} \frac{n!}{a_{1}!a_{2}!\cdots} \cdot \frac{(-1)^{a_{1}+2 a_{2}+\cdots}}{(1!)^{a_{1}}(2!)^{a_{2}} \cdots}\right) x^{a_{1}+2 a_{2}+\cdots}
\end{aligned}
$$

Let $P(i, j): a_{1}+2 a_{2}+\cdots=i, a_{1}+a_{2}+\cdots=j$. Then

$$
\begin{aligned}
\frac{1}{1+e^{-x}} & =\sum_{m=0}^{\infty}\left(\sum_{n=0}^{m}(-1)^{n} \sum_{P(m, n)} \frac{n!(-1)^{m} x^{m}}{a_{1}!a_{2}!\cdots a_{m}!(1!)^{a_{1}} \cdots(m!)^{a_{m}}}\right) \\
& =\sum_{m=0}^{\infty}(-1)^{m} \sum_{n=0}^{m} n!(-1)^{n} S_{2}(m, n) \frac{x^{m}}{m!}, \quad(\text { see }[13,9]),
\end{aligned}
$$

where $S_{2}(m, n)$ is the stirling number of the second kind. By the definition of Euler number, we get

$$
\frac{1}{1+e^{-x}}=\frac{1}{2}\left(\frac{2}{1+e^{-x}}\right)=\frac{1}{2} \sum_{m=0}^{\infty}(-1)^{m} E_{m} \frac{x^{m}}{m!}
$$

Thus, we see

$$
E_{m}=2 \sum_{n=0}^{m}(-1)^{n} n!S_{2}(m, n), \quad(\text { see }[9,13])
$$

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
[2] E. M. Beesley, An integral representation for the Euler numbers, Amer. Math. Monthly 76 (1969), 389-391.
[3] L. Carlitz, Some formulas for the Bernoulli and Euler polynomials, Math. Nachr. 25 (1963), 223-231.
[4] , The multiplication formulas for the Bernoulli and Euler polynomials, Math. Mag. 27 (1953), 59-64.
[5] J. Higgins, Double series for the Bernoulli and Euler numbers, J. London Math. Soc. 2 (1970), 722-726.
[6] D. S. Kim and T. Kim, Generalized Boole numbers and polynomials, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM. 110 (2016), no. 2, 823-839.
[7] D. S. Kim, T. Kim, H.-I. Kwon, and T. Mansour, Nonlinear differential equation for Korobov numbers, Adv. Stud. Contemp. Math. (Kyungshang) 26 (2016), no. 4, 733-740.
[8] \qquad , Barnes-type Boole polynomials, Contrib. Discrete Math. 11 (2016), no. 1, 7-15.
[9] T. Kim, Note on the Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 131-136.
[10] \qquad Euler numbers and polynomials associated with zeta functions, Abstr. Apol. Anal. 2008 (2008), Art. ID 581582, 11 pp.
[11] , Some identities for the Bernoulli the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no. 1, 23-28.
[12] T. Kim, J. Choi, and Y. H. Kim, A note on the values of Euler zeta functions at positive integers, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 1, 27-34.
[13] T. Kim and D. S. Kim, On λ-Bell Polynomials associated with umbral calculus, Russ. J. Math. Phys. 24 (2017), no. 1, 1-10.
[14] , A note on nonlinear Changhee differential equations, Russ. J. Math. Phys. 23 (2016), no. 1, 88-92.
[15] , Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2086-2098.
[16] H. I. Kwon, T. Kim, and J. J. Seo, Some new identities of symmetry for modified degenerate Euler polynomials, Proc. Jangjeon Math. Soc. 19 (2016), no. 2, 237-242.
[17] D. H. Lehmer, A new approach to Bernoulli polynomials, Amer. Math. Monthly. 95 (1988), no. 10, 905-911.
[18] F. R. Olson, Some determinants involving Bernoulli and Euler numbers of higher order, Pacific J. Math. 5 (1955), 259-268.
[19] L. C. Washington, Introduction to Cyclotomic Fields, Second edition. Graduate Text in Mathematics 83, Springer-Verlag. New York, 1997.
[20] A. Sharma, q-Bernoulli and Euler numbers of higher order, Duke Math. J. 25 (1958), 343-353.

Dae San Kim
Department of Mathematics
Sogang University
Seoul 121-742, Korea
Email address: dskim@sogang.ac.kr
Taekyun Kim
Department of Mathematics
Kwangwoon University
Seoul 139-701, Korea
Email address: tkkim@kw.ac.kr

