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FOURIER SERIES OF HIGHER-ORDER EULER FUNCTIONS

AND THEIR APPLICATIONS

Dae San Kim and Taekyun Kim

Abstract. In this paper, we give some identities for the higher-order

Euler functions arising from the Fourier series of them. In addition, we
investigate some formulae related to Bernoulli functions which are derived

from our identities.

1. Introduction

As is well known, the Euler polynomials are defined by the generating func-
tion

2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
, (see [1-20]).(1.1)

When x = 0, En = En(0) are called Euler numbers. For any real x, we define

〈x〉 = x− [x] ∈ [0, 1).(1.2)

Note that 〈x〉 is the fractional part of x. Then Em(〈x〉) are functions defined
on (−∞,∞) and periodic with period 1, which are called Euler functions. For
m ∈ N, the Fourier series of Em(〈x〉) is given by

Em(〈x〉) =

∞∑
n=−∞

a(m)
n e(2n+1)πix, (a(m)

n ∈ C), (see [9, 10, 13])(1.3)

where

a(m)
n =

∫ 1

0

Em(x)e−(2n+1)πixdx, (i =
√
−1).(1.4)

From (1.4), we note that

a(m)
n =

m

(2n+ 1)πi
a(m−1)n =

m(m− 1)(
(2n+ 1)πi

)2 a(m−2)n = · · · = m!a
(1)
n(

(2n+ 1)πi
)m−1 .

(1.5)
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Thus, by (1.5), we get

a(m)
n = 2

m!(
(2n+ 1)πi

)m+1 , (m ∈ N), (see [9, 10]).(1.6)

So, from (1.3) and (1.6), we have

Em(〈x〉) = 2m!

∞∑
n=−∞

e(2n+1)πix(
(2n+ 1)πi

)m+1 , (see [9, 10]).(1.7)

By (1.7), we get

Em = 2m!

∞∑
n=−∞

1(
(2n+ 1)πi

)m+1 , (m ∈ N ∪ {0}).(1.8)

Thus, from (1.8), we have

E2m+1 = (−1)m+12 · (2m+ 1)!

π2m+2

∞∑
n=−∞

1

(2n+ 1)2m+2
, (see [9, 10, 13]).(1.9)

By (1.9), we get

∞∑
n=0

1

(2n+ 1)2m+2
= (−1)m+1 E2m+1

4(2m+ 1)!
π2m+2, (see [9, 10]).(1.10)

For r ∈ N, the higher-order Euler polynomials are defined by the generating
function (

2

et + 1

)r
ext =

∞∑
n=0

E(r)
n (x)

tn

n!
, (see [9, 10, 13, 14, 17, 19]).(1.11)

When x = 0, E
(r)
n = E

(r)
n (0) are called the higher-order Euler numbers (see

[17, 19]). For any real number x, E
(r)
m (〈x〉) are functions defined on (−∞,∞)

and periodic with period 1, which are called Euler functions of order r. In this
paper, we give some new identities of the higher-order Euler functions which

are derived from the Fourier series of E
(r)
n (〈x〉). In addition, we investigate

some formulae related to Bernoulli functions.

2. Fourier series of higher-order Euler functions

From (1.11), we note that

E(r)
m (x+ 1) + E(r)

m (x) = 2E(r−1)
m (x), (m ≥ 0).(2.1)
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Indeed
∞∑
m=0

E(r)
m (x+ 1)

tm

m!
=

(
2

et + 1

)r
e(x+1)t =

(
2

et + 1

)r
(et + 1− 1)ext

= 2

(
2

et + 1

)r−1
ext −

(
2

et + 1

)r
ext

=

∞∑
m=0

(
2E(r−1)

m (x)− E(r)
m (x)

) tm
m!
.

(2.2)

For x = 0 in (2.1), we have

E(r)
m (1) = 2E(r−1)

m (0)− E(r)
m (0), (m ≥ 0).(2.3)

Thus, by (2.3), we get

E(r)
m (0) = E(r)

m (1)⇔ E(r)
m (0) = E(r−1)

m (0).(2.4)

Assume that m ≥ 1 and r ≥ 1. Then E
(r)
m (〈x〉) is piecewise C∞. In addition,

E
(r)
m (〈x〉) is continuous for those (r,m) with E

(r)
m (0) = E

(r−1)
m (0), and discon-

tinuous with jump discontinuities at integers for those (r,m) with E
(r)
m (0) 6=

E
(r−1)
m (0). The Fourier series of E

(r)
m (〈x〉) is

∞∑
n=−∞

C(r,m)
n e2πinx,(2.5)

where

C(r,m)
n =

∫ 1

0

E(r)
m (〈x〉)e−2πinxdx =

∫ 1

0

E(r)
m (x)e−2πinxdx

=
1

m+ 1

[
E

(r)
m+1(x)e−2πinx

]1
0

+
2πin

m+ 1

∫ 1

0

E
(r)
m+1(x)e−2πinxdx

=
1

m+ 1

[
E

(r)
m+1(1)− E(r)

m+1(0)
]

+
2πin

m+ 1
C(r,m+1)
n

=
2

m+ 1

(
E

(r−1)
m+1 (0)− E(r)

m+1(0)
)

+
2πin

m+ 1
C(r,m+1)
n .

(2.6)

Replacing m by m− 1 in (2.6), we have

2πin

m
C(r,m)
n = C(r,m−1)

n +
2

m

(
E(r)
m (0)− E(r−1)

m (0)
)
.(2.7)

Case 1. Let n 6= 0. Then we have

C(r,m)
n =

m

2πin
C(r,m−1)
n +

1

πin

(
E(r)
m (0)− E(r−1)

m (0)
)

=
m

2πin

(
m− 1

2πin
C(r,m−2)
n +

1

πin

(
E

(r)
m−1(0)− E(r−1)

m−1 (0)
))

+
1

πin

(
E(r)
m (0)− E(r−1)

m (0)
)

(2.8)
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=
m(m− 1)

(2πin)2
C(r,m−2)
n +

m

2

1

(πin)2

(
E

(r)
m−1(0)− E(r−1)

m−1 (0)
)

+
1

πin

(
E(r)
m (0)− E(r−1)

m (0)
)

=
m(m− 1)

(2πin)2

(
m− 2

2πin
C(r,m−3)
n +

1

πin

(
E

(r)
m−2(0)− E(r−1)

m−2 (0)
))

+
m

2

1

(πin)2

(
E

(r)
m−1(0)− E(r−1)

m−1 (0)
)

+
1

πin

(
E(r)
m (0)− E(r−1)

m (0)
)

=
m(m− 1)(m− 2)

(2πin)3
C(r,m−3)
n

+
m(m− 1)

22
1

(πin)3

(
E

(r)
m−2(0)− E(r−1)

m−2 (0)
)

+
m

2

1

(πin)2

(
E

(r)
m−1(0)− E(r−1)

m−1 (0)
)

+
1

πin

(
E(r)
m (0)− E(r−1)

m (0)
)

= · · ·

=
m!

(2πin)m−1
C(r,1)
n +

m−1∑
k=1

(m)k−1
2k−1

1

(πin)k

(
E

(r)
m−k+1(0)− E(r−1)

m−k+1(0)
)
,

where (x)n = x(x − 1) · · · (x − n + 1) for n ≥ 1, and (x)0 = 1. Here we note
that

C(r,1)
n =

∫ 1

0

E
(r)
1 (x)e−2πinxdx =

∫ 1

0

(
x+ E

(r)
1

)
e−2πinxdx

=

∫ 1

0

xe−2πinxdx+ E
(r)
1

∫ 1

0

e−2πinxdx

= − 1

2πin

[
xe−2πinx

]1
0

+
1

2πinx

∫ 1

0

e−2πinxdx

= − 1

2πin
.

(2.9)

Thus, by (2.8) and (2.9), we get

C(r,n)
n =

−m!

(2πin)m
+

m−1∑
k=1

2(m)k−1
(2πin)k

(
E

(r)
m−k+1(0)− E(r−1)

m−k+1(0)
)

(2.10)

=

m∑
k=1

2(m)k−1
(2πin)k

(
E

(r)
m−k+1(0)− E(r−1)

m−k+1(0)
)
.

Here we used the fact that E
(r)
n (0) =

∑
l1+···+lr=n

(
n

l1,...,lr

)
El1(0) · · ·Elr (0).

Case 2. Let n = 0. Then, we note that

C
(r,m)
0 =

∫ 1

0

E(r)
m (x)dx =

1

m+ 1

[
E

(r)
m+1(x)

]1
0

(2.11)
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=
1

m+ 1

(
E

(r)
m+1(1)− E(r)

m+1(0)
)

=
2

m+ 1

(
E

(r−1)
m+1 (0)− E(r)

m+1(0)
)
.

Assume first that E
(r)
m (0) = E

(r−1)
m (0). Then E

(r)
m (1) = E

(r)
m (0) and m ≥ 2.

Note that E
(r)
m (〈x〉) is piecewise C∞ and continuous. Hence the Fourier series

of E
(r)
m (〈x〉) converges uniformly to E

(r)
m (〈x〉), and

E(r)
m (〈x〉) =

2

m+ 1

(
E

(r−1)
m+1 (0)− E(r)

m+1(0)
)

+

∞∑
n=−∞
n 6=0

(
m∑
k=1

2(m)k−1
(2πin)k

(
E

(r)
m−k+1(0)− E(r−1)

m−k+1(0)
))

e2πinx.

(2.12)

Before proceedings further, we recall the following facts about Bernoulli func-
tions Bn(〈x〉):

Bm(〈x〉) = −m!

∞∑
n=−∞
n 6=0

e2πinx

(2πin)m
, (m ≥ 2), (see [1, 18]),(2.13)

and

−
∞∑

n=−∞
n 6=0

e2πinx

2πin
=

{
B1(〈x〉) for x /∈ Z
0 for x ∈ Z, (see [1, 18]).(2.14)

The series in (2.13) converges uniformly, but that in (2.3) converges only point-
wise. We note that (2.12) can be rewritten as

E(r)
m (〈x〉) =

2

m+ 1

(
E

(r−1)
m+1 (0)− E(r)

m+1(0)
)

+

m∑
k=1

2(m)k−1
k!

(
E

(r−1)
m−k+1(0)− E(r)

m−k+1(0)
)
·

−k!

∞∑
n=−∞
n 6=0

e2πinx

(2πin)k


=

2

m+ 1

(
E

(r−1)
m+1 (0)− E(r)

m+1(0)
)

+

m∑
k=2

2(m)k−1
k!

(
E

(r−1)
m−k+1(0)− E(r)

m−k+1(0)
)
Bk(〈x〉)(2.15)

+ 2
(
E(r−1)
m (0)− E(r)

m (0)
)
×

{
B1(〈x〉) for x /∈ Z
0 for x ∈ Z.

Therefore, we obtain the following theorem.
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Theorem 2.1. Let m ≥ 2, r ≥ 1. Assume that E
(r)
m (0) = E

(r−1)
m (0),

(a) E
(r)
m (〈x〉) has the Fourier series expansion

E(r)
m (〈x〉) =

2

m+ 1

(
E

(r−1)
m+1 (0)− E(r)

m+1(0)
)

+

∞∑
n=−∞
n 6=0

(
m∑
k=1

2(m)k−1
(2πin)k

(
E

(r)
m−k+1(0)− E(r−1)

m−k+1(0)
))

e2πinx

for all x ∈ (−∞,∞), where the convergence is uniform.

(b) E(r)
n (〈x〉) =

2

m+ 1

(
E

(r−1)
m+1 (0)− E(r)

m+1(0)
)

+

m∑
k=2

2(m)k−1
k!

(
E

(r−1)
m−k++1(0)− E(r)

m−k+1(0)
)
Bk(〈x〉)

for all x ∈ (−∞,∞), where Bk(〈x〉) is the Bernoulli function.

Assume next that E
(r)
m (0) 6= E

(r−1)
m (0). Then we note that E

(r)
m (1) 6=

E
(r)
m (0), and hence E

(r)
m (〈x〉) is piecewise C∞ and discontinuous with jump dis-

continuities at integers. Thus the Fourier series of E
(r)
m (〈x〉) converges pointwise

to E
(r)
m (〈x〉) for x /∈ Z, and converges to 1

2

(
E

(r)
m (0) + E

(r)
m (1)

)
= E

(r−1)
m (0) for

x ∈ Z. Thus, we obtain the following theorem.

Theorem 2.2. Let m ≥ 1, r ≥ 1. Assume that E
(r)
m (1) 6= E

(r−1)
m (0).

(a)
2

m+ 1

(
E

(r−1)
m+1 (0)− E(r)

m+1(0)
)

+

∞∑
n=−∞
n 6=0

(
m∑
k=1

2(m)k−1
(2πin)k

(
E

(r)
m−k+1(0)− E(r−1)

m−k+1(0)
))

e2πinx

=

{
E

(r)
m (〈x〉) for x /∈ Z

E
(r−1)
m (0) for x ∈ Z.

Here the convergence is pointwise.

(b)
2

m+ 1

(
E

(r−1)
m+1 (0)− E(r)

m+1(0)
)

+

m∑
k=1

2(m)k−1
k!

(
E

(r−1)
m−k+1(0)− E(r)

m−k+1(0)
)
Bk(〈x〉)

= E(r)
m (〈x〉) for x /∈ Z,

and

2

m+ 1

(
E

(r−1)
m+1 (0)− E(r)

m+1(0)
)

+

m∑
k=2

2(m)k−1
k!

(
E

(r−1)
m−k+1(0)− E(r)

m−k+1(0)
)
Bk(〈x〉)



FOURIER SERIES AND THEIR APPLICATIONS 113

= E(r−1)
m (0) for x ∈ Z.

Here Bk(〈x〉) is the Bernoulli function.

Remark. Note that

1

1 + e−x
=

∞∑
n=0

e−nx(−1)n =

∞∑
n=0

( ∞∑
k=0

(−1)k

k!
xk

)n
(−1)n

=

∞∑
n=0

(−1)n

( ∑
a1+a2+···=n

n!

a1!a2! · · ·
· (−1)a1+2a2+···

(1!)a1(2!)a2 · · ·

)
xa1+2a2+···.

Let P (i, j) : a1 + 2a2 + · · · = i, a1 + a2 + · · · = j. Then

1

1 + e−x
=

∞∑
m=0

 m∑
n=0

(−1)n
∑

P (m,n)

n!(−1)mxm

a1!a2! · · · am!(1!)a1 · · · (m!)am


=

∞∑
m=0

(−1)m
m∑
n=0

n!(−1)nS2(m,n)
xm

m!
, (see [13, 9]),

where S2(m,n) is the stirling number of the second kind. By the definition of
Euler number, we get

1

1 + e−x
=

1

2

(
2

1 + e−x

)
=

1

2

∞∑
m=0

(−1)mEm
xm

m!
.

Thus, we see

Em = 2

m∑
n=0

(−1)nn!S2(m,n), (see [9, 13]).
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