과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China, Shandong Natural Science Foundation, Distinguished Young scholars Foundation of Anhui Province, University Discipline
참고문헌
- A. Ayache, S. Leger, and M. Pontier, Drap brownien fractionnaire, Potential Anal. 17 (2002), no. 1, 31-43. https://doi.org/10.1023/A:1015260803576
- X. Bardina and M. Jolis, Weak approximation of the Brownian sheet from a Poisson process in the plane, Bernoulli 6 (2000), no. 4, 653-665. https://doi.org/10.2307/3318512
- X. Bardina, M. Jolis, and C. A. Tudor, Weak convergence to the fractional Brownian sheet and other two-parameter Gaussian processes, Statist. Probab. Lett. 65 (2003), no. 4, 317-329. https://doi.org/10.1016/j.spl.2003.09.001
- J. A. Barnes and D. W. Allan, A statistical model of flicker noise, Proc. IEEE. 54 (1966), 176-178. https://doi.org/10.1109/PROC.1966.4630
- P. J. Bickel and M. J. Wichura, Convergence criteria for multiparameter stochastic processes and some applications, Ann. Math. Statist. 42 (1971), 1656-1670. https://doi.org/10.1214/aoms/1177693164
- R. Cairoli and J. B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111-183. https://doi.org/10.1007/BF02392100
- H. Dai, Convergence in law to operator fractional Brownian motion of Riemann-Liouville type, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 4, 777-788.
- H. Dai, Convergence in law to operator fractional Brownian motions, J. Theoret. Probab. 26 (2013), no. 3, 676-696. https://doi.org/10.1007/s10959-011-0401-4
- H. Dai, Approximation to multifractional Riemann-Liouville Brownian sheet, Comm. Statist. Theory Methods 44 (2015), no. 7, 1399-1410. https://doi.org/10.1080/03610926.2013.765476
- H. Dai, T.-C. Hu, and J.-Y. Lee, Operator fractional Brownian motion and martingale differences, Abstr. Appl. Anal. 2014, Art. ID 791537, 8 pp.
- H. Dai and Y. Li, A note on approximation to multifractional Brownian motion, Sci. China Math. 54 (2011), no. 10, 2145-2154. https://doi.org/10.1007/s11425-011-4246-1
- H. Dai, G. Shen, and L. Kong, Limit theorems for functionals of Gaussian vectors, Front. Math. China 12 (2017), no. 4, 821-842. https://doi.org/10.1007/s11464-016-0620-1
- G. Didier and V. Pipiras, Integral representations and properties of operator fractional Brownian motions, Bernoulli 17 (2011), no. 1, 1-33. https://doi.org/10.3150/10-BEJ259
- G. Didier and V. Pipiras, Exponents, symmetry groups and classification of operator fractional Brownian motions, J. Theoret. Probab. 25 (2012), no. 2, 353-395. https://doi.org/10.1007/s10959-011-0348-5
- A. M. Garsia, Continuity properties of Gaussian processes with multidimensional time parameter, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statis-tics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, 369-374, Univ. California Press, Berkeley, CA.
- A. Kamont, On the fractional anisotropic Wiener field, Probab. Math. Statist. 16 (1996), no. 1, 85-98.
- R. G. Laha and V. K. Rohatgi, Operator self-similar stochastic processes in Rd, Sto-chastic Process. Appl. 12 (1982), no. 1, 73-84.
- J. Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 62-78. https://doi.org/10.1090/S0002-9947-1962-0138128-7
- Y. Li and H. Dai, Approximations of fractional Brownian motion, Bernoulli 17 (2011), no. 4, 1195-1216. https://doi.org/10.3150/10-BEJ319
- S. C. Lim, Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type, J. Phys. A 34 (2001), no. 7, 1301-1310. https://doi.org/10.1088/0305-4470/34/7/306
- M. Maejima and J. D. Mason, Operator-self-similar stable processes, Stochastic Process. Appl. 54 (1994), no. 1, 139-163. https://doi.org/10.1016/0304-4149(94)00010-7
- J. D. Mason and Y. Xiao, Sample path properties of operator-self-similar Gaussian random fields, Theory Probab. Appl. 46 (2002), no. 1, 58-78. https://doi.org/10.1137/S0040585X97978749
- R. Morkvenas, The invariance principle for martingales in the plane, Litovsk. Mat. Sb. 24 (1984), no. 4, 127-132.
- G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian random processes, Stochastic Modeling, Chapman & Hall, New York, 1994.
- W. Vervaat, Sample path properties of self-similar processes with stationary increments, Ann. Probab. 13 (1985), no. 1, 1-27. https://doi.org/10.1214/aop/1176993063
- Z. Wang, L. Yan, and X. Yu, Weak approximation of the fractional Brownian sheet from random walks, Electron. Commun. Probab. 18 (2013), no. 90, 13 pp.
- Z. Wang, L. Yan, and X. Yu, Weak convergence to the fractional Brownian sheet using martingale differ-ences, Statist. Probab. Lett. 92 (2014), 72-78. https://doi.org/10.1016/j.spl.2014.04.014
- W. Whitt, Stochastic-process limits, Springer Series in Operations Research, Springer-Verlag, New York, 2002.