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THE OUTER-CONNECTED VERTEX EDGE DOMINATION

NUMBER OF A TREE
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Venkatakrishnan

Abstract. For a given graph G = (V,E), a set D ⊆ V (G) is said to
be an outer-connected vertex edge dominating set if D is a vertex edge

dominating set and the graph G \D is connected. The outer-connected

vertex edge domination number of a graph G, denoted by γocve(G), is the
cardinality of a minimum outer connected vertex edge dominating set of

G. We characterize trees T of order n with l leaves, s support vertices,
for which γocve(T ) = (n − l + s + 1)/3 and also characterize trees with

equal domination number and outer-connected vertex edge domination

number.

1. Introduction

Let G = (V,E) be a simple graph. The degree of a vertex v, denoted
by dG(v) or deg(v), is the cardinality of its open neighborhood. The open
neighborhood of a vertex v of G is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}
and the set NG[v] = NG(v) ∪ {v} is called its closed neighborhood. A vertex
of degree one is a leaf, while the edge incident with a leaf is called an end
edge. The vertex adjacent to a leaf is called a support vertex and a support
vertex is strong (weak, respectively) if it is adjacent to at least two leaves
(exactly one leaf, respectively). The length of the shortest u − v path in the
connected graph G is the distance between u and v, denoted by d(u, v) and
max{d(u, v) : u, v ∈ V (G)} is the diameter of G denoted by diam(G). The
path on n vertices is denoted by Pn and a cycle on n vertices is denoted by Cn.
A complete graph on n vertices is denoted byKn and a complete bipartite graph
with partition set of cardinality m, n is denoted by Km,n. The complement

of a graph G denoted by Gc or G is defined as the graph on the same vertices
such that two distinct vertices in Gc are adjacent if and only if they are not
adjacent in G. Let T be a tree, and let v be a vertex of T . A vertex v is said
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to be adjacent to a path Pn if there is a neighbor of v, say x, such that the
subtree T − vx containing x is a path Pn and x is a leaf in it.

A subset D ⊆ V (G) is a dominating set, abbreviated DS, of a graph G if
every vertex of V (G) \ D has a neighbor in D. The domination number of a
graph G, denoted by γ(G), is the minimum cardinality of a dominating set of
G. For a comprehensive survey of domination in graphs, see [3].

A vertex v ∈ V (G) dominates an edge e ∈ E(G) if v is incident with e or with
an edge adjacent to e. A subset D ⊆ V (G) is a vertex-edge dominating set,
abbreviated VEDS, of a graph G if every edge of G is vertex-edge dominated
by a vertex in D. The vertex-edge domination number of a graph G, denoted
by γve(G), is the minimum cardinality of a vertex-edge dominating set of G.
Vertex-edge domination in graphs was introduced in [6] and further studied in
[1, 4, 5].

A subset D of V (G) is an outer-connected dominating set, abbreviated OCD,
of a graph G if D is a dominating set and the graph G \D is connected. The
outer-connected domination number of a graph G, denoted by γ̃c(G), is the
cardinality of a minimum outer-connected dominating set of G. The outer-
connected domination number of a graph was introduced in [2].

A subset D of V (G) is an outer-connected vertex edge dominating set, ab-
breviated OCVEDS, of a graph G if D is a vertex edge dominating set of G
and the graph G \D is connected. The outer-connected vertex edge domina-
tion number of a graph G, denoted by γocve(G), is the minimum cardinality of
an outer-connected vertex edge dominating set of G. The problem OCVEDS
has possible applications in computer networks. Consider a client-server archi-
tecture based model. Let D denote the set of servers and V \D be the set of
clients. Two servers may or may not be related directly. But these servers have
the unique property of being able to communicate not only with the clients who
are directly linked to them, but also to the clients who are at a distance two
from the servers with the main emphasis to the connectivity of the clients to
the servers. Each client can communicate with another client in the group
either directly or through another client. The smallest group of servers with
this property is a minimum outer-connected vertex edge dominating set for the
graph which represents the computer network.

We characterize trees T of order n with l leaves, s support vertices, for which
γocve(T ) = (n− l + s+ 1)/3.

2. Preliminary result

Let Kn, Cn and Pn denote the complete graph, the cycle and the path of
order n, respectively. By a star of order n we mean the bipartite graph K1,n−1
for n ≥ 2. In the first observation we present the OCVE domination number
of standard graphs.

Observation 1:

(i) γocve(Kn) = 1 for n ≥ 1.
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(ii) γocve(Cn) =
{ 1, if n = 3, 4,
n− 3, if n ≥ 5.

(iii) γocve(Pn) =

{
1, if n = 2, 3,
2, if n = 4, 5,
n− 3, if n ≥ 6.

(iv) γocve(Km,n) = 1 for (m,n) ≥ 1.

Observation 2: Every OCVEDS is a VEDS of a graph G. Thus we have
γve(G) ≤ γocve(G).

Observation 3: Let D be a γ̃c(G)-set. Then D is a OCD set of G. That is
D is dominating set and G \D is connected. Every dominating set is a VEDS
of G. Hence, D is a OCVEDS of G. Thus, we get γocve(G) ≤ γ̃c(G).

Observation 4: For any graph G, 1 ≤ γocve(G) ≤ n − 1. The upper bound
is attained for K2.

We now improve the lower bound on the outer connected vertex-edge dom-
ination number of trees. First we show that if T is a nontrivial tree of or-
der n with l leaves and s support vertices, then γocve(T ) is bounded below by
(n − l + s + 1)/3. For the purpose of characterizing the trees attaining this
bound, we introduce a family T of trees T = Tk that can be obtained as follows.
Let T1 be a path P3 or P5. If k is a positive integer, then Tk+1 can be obtained
recursively from Tk by one of the following operations.

• Operation O1: Attach a vertex by joining it to any support vertex of
Tk.

• Operation O2: Attach a P3 by joining one of its leaves to a vertex of
Tk adjacent to a path P3.

• Operation O3: Attach a P3 by joining one of its leaves to a support
vertex of Tk.

We prove that for every tree T of the family T we have γocve(T ) = (n − l +
s+ 1)/3.

Lemma 1. If T ∈ T , then γocve(T ) = (n− l + s+ 1)/3.

Proof. We use the induction on the number k of operations performed to con-
struct the tree T . If T = T1 = P3, then (n− l+ s+ 1)/3 = (3− 2 + 1 + 1)/3 =
1 = γocve(T ).

Let k be a positive integer. Assume that the result is true for every tree
T ′ = Tk of the family T constructed by k−1 operations. Let n′ be the order of
the tree T ′, l′ the number of its leaves and s′ the number of support vertices.
Let T = Tk+1 be a tree of the family T constructed by k operations.

First assume that T is obtained from T ′ by operationO1. We have n = n′+1,
l = l′ + 1 and s = s′. It is straightforward to see that any γocve(T

′)-set is a
OCVEDS of the tree T . Thus γocve(T ) ≤ γocve(T

′). Obviously γocve(T
′) ≤ γocve(T ).

This implies that γocve(T ) = γocve(T
′). We now get γocve(T ) = γocve(T

′) = (n′ − l′ +
s′ + 1)/3 = (n− 1− l + 1 + s+ 1)/3 = (n− l + s+ 1)/3.
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Now assume that T is obtained from T ′ by operation O2. We have n = n′+3,
l = l′ + 1 and s = s′ + 1. We denote by x the leaf to which a path v1v2v3 is
attached. Let v1 be adjacent to x. Let u1u2u3 be another P3 path adjacent
to x. Let u1 be adjacent to x. Let D′ be a γocve(T

′)-set. It is easy to see
that D′ ∪ {v3} is an OCVEDS of the tree T . Thus γocve(T ) ≤ γocve(T

′) + 1.
Let D be a γocve(T )-set. It is easy to see that D \ {v3} is an OCVEDS of the
tree T ′. Thus γocve(T

′) ≤ γocve(T ) − 1. We now get γocve(T ) = γocve(T
′) + 1 =

((n′ − l′ + s′ + 1)/3) + 1 = (n− 3− l+ 1 + s− 1 + 1 + 3)/3 = (n− l+ s+ 1)/3.
Now assume that T is obtained from T ′ by operation O3. We have n = n′+3,

l = l′ + 1 and s = s′ + 1. We denote by x the support vertex to which P3 is
attached. Let v1v2v3 be the attached path. Let v1 be joined to x. Let y be a
leaf adjacent to x. Let D′ be any γocve(T

′)-set. It is easy to see that D′ ∪ {v3}
is an OCVEDS of the tree T . Thus γocve(T ) ≤ γocve(T

′) + 1. Now let us observe
that there exists a γocve(T )-set that does not contain v1 and v2. Let D be such
a set. To dominate the edges v2v1 and xv1, we have v3, y ∈ D. Observe that
D \ {v3} is an OCVEDS of the tree T ′. Therefore γocve(T

′) ≤ γocve(T ) − 1. We
now conclude that γocve(T ) = γocve(T

′) + 1. We get γocve(T ) = γocve(T
′) + 1 =

((n′− l′+s′+1)/3)+1 = (n−3− l+1+s−1+1+3)/3 = (n− l+s+1)/3. �

We now give a lower bound on the outer connected vertex edge domination
number of a tree together with the characterization of the extremal trees.

Theorem 2. If T is a nontrivial tree of order n ≥ 3 with l leaves and s support
vertices, then γocve(T ) ≥ (n− l + s+ 1)/3 with equality if and only if T ∈ T .

Proof. If diam(T ) = 2, then T is a star. If P is P3, then n = 3, l = 2 and
s = 1. Consequently, (n− l + s+ 1)/3 = (3− 2 + 1 + 1)/3 = 1 = γocve(T ). If T
is a star other than P3, we obtain T from P3 by finite number of operation O1

on the support vertex. Thus T ∈ T .
Now assume that diam(T ) ≥ 3. Thus the order n of the tree T is at least

four. We obtain the result by induction on the number n. Assume that the
theorem is true for every tree T ′ of order n′ < n with l′ leaves and s′ support
vertices.

First assume that some support vertex of T , say x, is strong. Let y be a leaf
adjacent to x. Let T ′ = T − y. We have n′ = n − 1, l′ = l − 1 and s′ = s.
Obviously γocve(T ) ≥ γocve(T ′). We get γocve(T ) ≥ γocve(T ′) ≥ (n′ − l′ + s′ + 1)/3 =
(n− 1− l+ 1 + s+ 1)/3 = (n− l+ s+ 1)/3. If γocve(T ) = (n− l+ s+ 1)/3, then
obviously γocve(T

′) = (n′ − l′ + s′ + 1)/3. By the inductive hypothesis, we have
T ′ ∈ T . The tree T can be obtained from T ′ by operation O1. Thus T ∈ T .
Henceforth, we can assume that every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(T ). Let t be
a leaf at maximum distance from r, v be the parent of t, and u be the parent
of v in the rooted tree. If diam(T ) ≥ 4, then let w be the parent of u. If
diam(T ) ≥ 5, then let d be the parent of w. If diam(T ) ≥ 6, then let e be
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the parent of d. By Tx, we denote the sub-tree induced by a vertex x and its
descendants in the rooted tree T .

Assume that some child of u, say x, is a leaf. Let T ′ = T − Tv. We have
n′ = n − 2, l′ = l − 1 and s′ = s − 1. Let D be a γocve(T )-set. To dominate
the edge tv, the vertex t ∈ D. It is easy to see that D \ {t} is an OCVEDS
of the tree T ′. Thus γocve(T ) ≥ γocve(T

′) + 1 ≥ ((n′ − l′ + s′ + 1)/3) + 1 =
((n− 2− l + 1 + s− 1 + 1)/3) + 1 = (n− l + s+ 2)/3 > (n− l + s+ 1)/3.

Now assume that among the children of u there is a support vertex other
than v. Let T ′ = T − Tv. We have n′ = n− 2, l′ = l− 1 and s′ = s− 1. Let D
be a γocve(T )-set. It is obvious that t ∈ D. It is clear that D\{t} is an OCVEDS
of the tree T ′. We now get γocve(T ) ≥ γocve(T ′) + 1 ≥ ((n′ − l′ + s′ + 1)/3) + 1 ≥
(n− 2− l + 1 + s− 1 + 1 + 3)/3 > (n− l + s+ 1)/3.

Now assume that dT (u) = 2. Assume that dT (w) ≥ 3. First assume that
some child of w, say x, such that the distance of w to the most distant vertex
of Tx is three. It suffices to consider only the possibilities when Tx is P3 = xyz.
Let T ′ = T − Tx. We have n′ = n − 3, l′ = l − 1 and s′ = s − 1. Let D be a
γocve(T )-set. It is obvious that z ∈ D. It is easy to see that D\{z} is an OCVEDS
of the tree T ′. We now get γocve(T ) ≥ γocve(T ′) + 1 ≥ ((n′ − l′ + s′ + 1)/3) + 1 =
((n−3−l+1+s−1+1)/3)+1 = (n−l+s+1)/3. If γocve(T ) = (n−l+s+1)/3, then
obviously γocve(T

′) = (n′ − l′ + s′ + 1)/3. By the inductive hypothesis T ′ ∈ T .
The tree T is obtained from T ′ by operation O2. Thus T ∈ T .

Assume that some child of w, say x, such that the distance of w to the
most distant vertex of Tx is two. It suffices to consider the possibilities when
Tx = P2 = xy. Let T ′ = T − Tx. We have n′ = n− 2, l′ = l− 1 and s′ = s− 1.
Let D be a γocve(T )-set. To dominate the edge xy, the vertex y ∈ D. It is obvious
that D \{y} is an OCVEDS of the tree T ′. We now get γocve(T ) ≥ γocve(T ′)+1 ≥
((n′− l′+ s′+ 1)/3) + 1 = ((n− 2− l+ 1 + s− 1 + 1)/3) + 1 > (n− l+ s+ 1)/3.

Assume that some child of w, say x, is a leaf. Let T ′ = T − Tu. We have
n′ = n− 3, l′ = l− 1 and s′ = s− 1. Let D be a γocve(T )-set. It is obvious that
t, x ∈ D. It is easy to see that D \ {t} is an OCVEDS of the tree T ′. Thus
γocve(T ) ≥ γocve(T

′) + 1 ≥ ((n′ − l′ + s′ + 1)/3) + 1 = ((n − 3 − l + 1 + s − 1 +
1)/3) + 1 = (n − l + s + 1)/3. If γocve(T ) = (n − l + s + 1)/3, then obviously
γocve(T

′) = (n′ − l′ + s′ + 1)/3. By the inductive hypothesis T ′ ∈ T . The tree T
is obtained from T ′ by operation O3. Thus T ∈ T .

Now assume that dT (w) = 2. Let dT (d) = 1. Then T = P5. We have
(n− l+s+1)/3 = (5−2+2+1)/3 = 2 = γocve(T ). Now assume that some child
of d is a leaf. Let T ′ = T −Tu. We have n′ = n−3, l′ = l and s′ = s−1. Let D
be a γocve(T )-set. It is obvious that t ∈ D. To dominate the edge wu, the vertex
v ∈ D. It is clear that D \ {v, t} is an OCVEDS of the tree T ′. We now get
γocve(T ) ≥ γocve(T ′)+2 ≥ ((n′− l′+s′+1)/3)+2 ≥ ((n−3− l+s−1+1)/3)+2 >
(n− l + s+ 1)/3.

Now assume that no child of d is a leaf. Let T ′ = T − Tu. We have
n′ = n − 3, l′ = l and s′ = s. Let D be a γocve(T )-set. It is easy to see that
v, t ∈ D. It is obvious that D\{v, t} is an OCVEDS of the tree T ′. We now get
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γocve(T ) ≥ γocve(T ′) + 2 ≥ ((n′− l′+ s′+ 1)/3) + 2 = ((n− 3− l+ s+ 1)/3) + 2 >
(n− l + s+ 1)/3. �

3. Domination and outer-connected vertex edge domination

We begin this section with a lemma which will be useful.

Lemma 3. Let T be a tree with |V (T )| ≥ 2. There exists a minimum domi-
nating set D of T such that D contains every support vertex.

Proof. Let D be a minimum dominating set of T . Assume that D does not
contain a support vertex u. Let x be the leaf adjacent to u. To dominate x,
the vertex x ∈ D as u is not in D. The set (D \ {x}) ∪ {u} is a minimum
dominating set. Every support vertex is in D. If v is a vertex adjacent to a
support vertex but not a support vertex is in D, then D \ {v} is a dominating
set, a contradiction. �

We now characterize the trees attaining the equality of domination number
and outer connected vertex-edge domination number. For this purpose, we
introduce a family F of trees T = Tk that can be obtained as follows. Let
T1 be a path P3 or P4. If k is a positive integer, then Tk+1 can be obtained
recursively from Tk by one of the following operations.

• Operation O1: Attach a vertex by joining it to any support vertex of
Tk.

• Operation O2: Attach a path P2 by joining one of its vertex to a vertex
of Tk adjacent to a path P2.

• Operation O3: Attach a path P2 by joining one of its vertex to a
support vertex of Tk.

• Operation O4: Attach a path P3 by joining one of its leaf to a support
vertex of Tk.

We prove that for every tree in the family F , the domination number is equal
to the outer connected vertex edge domination number.

Lemma 4. If T ∈ F , then γ(T ) = γocve(T ).

Proof. We use the induction on the number k of operations performed to con-
struct the tree T . If T = T1 = P3, then γ(T ) = 1 = γocve(T ). If T = P4, then
γ(T ) = 2 = γocve(T ). Let k be a positive integer. Assume the result is true
for every tree T ′ = Tk of the family F constructed by k − 1 operations. Let
T = Tk+1 be a tree of the family F constructed by k operations.

First assume that T is obtained from T ′ by operation O1. It is straight-
forward to see that any γ(T ′)-set is a DS of the tree T . Thus γ(T ) ≤ γ(T ′).
Obviously γ(T ′) ≤ γ(T ). This implies that γ(T ) = γ(T ′). It is also easy to
obtain γocve(T

′) = γocve(T ). We now get γ(T ) = γ(T ′) = γocve(T
′) = γocve(T ).

Now assume that T is obtained from T ′ by operation O2. We denote by x
the vertex to which a path P2 = u1u2 is attached. Let u1 be joined to x. Let
v1v2 be a path different from u1u2 adjacent to x. Let v1 be joined to x. Let
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D′ be any γocve(T
′)-set. It is easy to see that D′ ∪ {u2} is an OCVEDS of the

tree T . Thus γocve(T ) ≤ γocve(T
′) + 1. Let D be a γocve(T )-set. To dominate the

edge xv1 and v1v2, the vertex v2 ∈ D. To dominate the edges xu1 and u1u2,
the vertex u2 ∈ D. It is easy to see that D \ {u2} is an OCVEDS of the tree
T ′. Thus γocve(T

′) ≤ γocve(T ) − 1. This implies that γocve(T ) = γocve(T
′) + 1. Let

D′ be a γ(T ′)-set. It is easy to observe that D′ ∪ {u1} is a DS of the tree T .
Thus γ(T ) ≤ γ(T ′) + 1. Let D be a γ(T )-set. To dominate v2 and u2, the
vertices v1 and u1 is in D. It is easy to see that D \ {u1} is a DS of the tree
T ′. Thus γ(T ′) ≤ γ(T ) − 1. This implies that γ(T ) = γ(T ′) + 1. We now get
γ(T ) = γ(T ′) + 1 = γocve(T

′) + 1 = γocve(T ).
Now assume that T is obtained from T ′ by operation O3. We denote by x

the support vertex to which a path P2 = u1u2 is attached. Let u1 be joined
to x. Let y be a leaf adjacent to x. Let D′ be any γ(T ′)-set. It is easy to
see that D′ ∪ {u1} is a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 1. Let D be
a γ(T )-set. Clearly x, u1 ∈ D. It is easy to observe that D \ {u1} is a DS
of the tree T ′. Thus γ(T ′) ≤ γ(T ) − 1. This implies that γ(T ) = γ(T ′) + 1.
Let D′ be a γocve(T

′)-set. It is obvious that D′ ∪ {u2} is an OCVEDS of the
tree T . Thus γocve(T ) ≤ γocve(T

′) + 1. Let D be a γocve(T )-set. To dominate
the edges xu1 and u1u2, the vertex u2 ∈ D. To dominate the edge xy, the
edge y ∈ D. It is clear that D \ {u2}is an OCVEDS of the tree T . Thus
γocve(T

′) ≤ γocve(T ) − 1. This implies that γocve(T
′) = γocve(T ) − 1. We now get

γ(T ) = γ(T ′) + 1 = γocve(T
′) + 1 = γocve(T ).

Now assume that T is obtained from T ′ by operation O4. We denote by x
the support vertex to which a path P3 = u1u2u3 is attached. Let u1 be joined
to x. Let y be a leaf adjacent to x. Let D′ be a γ(T ′)-set. It is obvious that
D′∪{u2} is a DS of the tree T . Thus γ(T ) ≤ γ(T ′)+1. Let D be a γ(T )-set. To
dominate y and u3, the vertices x, u2 ∈ D. It is easy to see that D\{u2} is a DS
of the tree T ′. Thus γ(T ) ≤ γ(T ′)−1. This implies that γ(T ) = γ(T ′)+1. Let
D′ be a γocve(T

′)-set. It is clear that D′∪{u3} is an OCVEDS of the tree T . Thus
γocve(T ) ≤ γocve(T

′) + 1. Let D be a γocve(T )-set. To dominate the edges xy, u1u2
and u2u3, the vertices y, u3 ∈ D. It is clear that D\{u3} is an OCVEDS of the
tree T ′. Thus γocve(T

′) ≤ γocve(T ) − 1. This implies that γocve(T ) = γocve(T
′) + 1.

We now get γ(T ) = γ(T ′) + 1 = γocve(T
′) + 1 = γocve(T ). �

We now give the lower bound on the outer connected vertex-edge domi-
nation number of a tree in terms of domination number, together with the
characterization of extremal trees.

Theorem 5. Let T be a tree. If γ(T ) ≤ γocve(T ) with equality if and only if
T = P2 or T ∈ F .

Proof. If diam(T ) = 1, then T = P2 ∈ F . If diam(T ) = 2, then T is a star. If
T = P3, then T ∈ F . If T is a star different from P3, then it can be obtained
from P3 by an appropriate number of operations O1. Thus T ∈ F . Now assume
that diam(T ) ≥ 3. Thus the order n of the tree is at least four. The result we
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obtain by the induction on the number n. Assume that the theorem is true for
every tree T ′ of order n′ < n.

First assume that some support vertex of T , say x, is strong. Let y be
a leaf adjacent to x. Let T ′ = T − y. We have γ(T ) ≤ γ(T ′). Obviously
γocve(T

′) ≤ γocve(T ). We get γ(T ) ≤ γ(T ′) ≤ γocve(T ′) ≤ γocve(T ). If γ(T ) = γocve(T ),
then obviously γ(T ′) = γocve(T

′). By the inductive hypothesis, we have T ′ ∈ F .
The tree T can be obtained from T ′ by operation O1. Thus T ∈ F . Henceforth,
we can assume that every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(T ). Let t be
a leaf at maximum distance from r, v be the parent of t, and u be the parent
of v in the rooted tree. If diam(T ) ≥ 4, then let w be the parent of u. If
diam(T ) ≥ 5, then let d be the parent of w. If diam(T ) ≥ 6, then let e be
the parent of d. By Tx we denote by subtree induced by a vertex x and its
descendants in the rooted tree.

Assume that among the children of u there is a support vertex other than
v. Let T ′ = T − Tv. Let D′ be a γ(T ′)-set. It is clear that D′ ∪ {v} is
a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 1. Let D be a γocve(T )-set. To
dominate the edges vt and uv, the vertex t ∈ D. It is obvious that D \ {t}
is an OCVEDS of the tree T ′. Thus γocve(T

′) ≤ γocve(T ) − 1. We now get
γ(T ) ≤ γ(T ′) + 1 ≤ γocve(T

′) + 1 ≤ γocve(T ). If γ(T ) = γocve(T ), then obviously
γ(T ′) = γocve(T

′). By the inductive hypothesis, we have T ′ ∈ F . The tree T can
be obtained from T ′ by operation O2. Thus T ∈ F .

Assume that some child of u, say x, is a leaf. Let T ′ = T − Tv. Let
D′ be a γ(T ′)-set. It is obvious that D′ ∪ {v} is a DS of the tree T . Thus
γ(T ) ≤ γ(T ′) + 1. Let D be a γocve(T )-set. To dominate the edges vt and uv,
the vertex t ∈ D. It is clear that D \ {t} is an OCVEDS of the tree T ′. Thus
γocve(T

′) ≤ γocve(T )− 1. We now get γ(T ) ≤ γ(T ′) + 1 ≤ γocve(T ′) + 1 ≤ γocve(T ). If
γ(T ) = γocve(T ), then obviously γ(T ′) = γocve(T

′). By the inductive hypothesis,
we have T ′ ∈ F . The tree T can be obtained from T ′ by operation O3. Thus
T ∈ F .

Now assume that dT (u) = 2. Assume that dT (w) ≥ 3. Assume that no child
of w is a leaf. Let T ′ = T − Tu. Let D′ be a γ(T ′)-set. It is easy to see that
D′ ∪ {v} is a DS of the tree T . Thus γ(T ) ≤ γ(T ′) + 1. Let D be a γocve(T )-set.
To dominate the edges vt, vu and wu, the vertices v, t ∈ D. It is clear that
D \ {v, t} is an OCVEDS of the tree T ′. Thus γocve(T

′) ≤ γocve(T )− 2. We now
get γ(T ) ≤ γ(T ′) + 1 ≤ γocve(T ′) + 1 ≤ γocve(T )− 1 < γocve(T ).

Assume that some child of w, say x is a leaf. Let T ′ = T − Tu. Let
D′ be a γ(T ′)-set. It is easy to see that D′ ∪ {v} is a DS of the tree T . Thus
γ(T ) ≤ γ(T ′)+1. Let D be a γocve(T )-set. To dominate the edges vt, vu and wu,
the vertices x, t ∈ D. It is clear that D\{t} is an OCVEDS of the tree T ′. Thus
γocve(T

′) ≤ γocve(T )− 1. We now get γ(T ) ≤ γ(T ′) + 1 ≤ γocve(T ′) + 1 ≤ γocve(T ). If
γ(T ) = γocve(T ), then obviously γ(T ′) = γocve(T

′). By the inductive hypothesis,
we have T ′ ∈ F . The tree T can be obtained from T ′ by operation O4. Thus
T ∈ F .
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Now assume dT (w) = 2. Let dT (d) ≥ 2. Let T ′ = T − Tu. Let D′ be
a γ(T ′)-set. It is easy to see that D′ ∪ {v} is a DS of the tree T . Thus
γ(T ) ≤ γ(T ′) + 1. Let D be a γocve(T )-set. To dominate the edges vt, vu and
wu, the vertices v, t ∈ D. It is clear that D \ {v, t} is an OCVEDS of the tree
T ′. Thus γocve(T

′) ≤ γocve(T )− 2. We now get γ(T ) ≤ γ(T ′) + 1 ≤ γocve(T ′) + 1 ≤
γocve(T )− 1 < γocve(T ). �
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