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DISCOUNT BARRIER OPTION PRICING WITH A

STOCHASTIC INTEREST RATE: MELLIN TRANSFORM

TECHNIQUES AND METHOD OF IMAGES

Junkee Jeon and Ji-Hun Yoon

Abstract. In finance, barrier options are options contracts with a payoff
that depends on whether the price of the underlying asset hits a predeter-

mined barrier level during the option’s lifetime. Based on exotic options

and random fluctuations of interest rates in the marketplace, we con-
sider discount barrier options with a stochastic interest rate driven by

the Hull-White process. This paper derives the closed-form solutions of
the discount barrier option and the discount double barrier option using

Mellin transform methods and the PDE (partial differential equation)

method of images.

1. Introduction

The pricing of many path-dependent options models in the marketplace has
created interesting mathematical challenges. Barrier options, a type of path-
dependent option, represent a derivative contract that is activated or nullified
when the underlying asset price reaches a predetermined level. Barrier options
are popular because they provide the insurance value of an option when acting
as a hedge but are cheaper than the vanilla option. However, problems remain
in managing option pricing models and generalizing the Black-Scholes model.
A closed-form solution of barrier options based on the Black-Scholes framework
was first suggested by Robert Merton [10]. Rubinstein and Reiner [12] derived
the pricing formulas for all eight barrier types.

In real situations, random changes in interest rates over time have a sig-
nificant influence on option prices. From this perspective, many studies have
examined European option pricing with a stochastic interest rate. Amin and
Jarrow [1] derived the closed-form formula of European option prices with a
Gaussian Ornstein-Uhlenbeck process using probabilistic approaches. Addi-
tionally, Kim, Yoon, and Yu [9] investigated a multiscale stochastic volatility
model with a Hull-White stochastic interest rate and demonstrated that the
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performance of the data fitting of the multiscale stochastic volatility model
with stochastic interest rates outperformed that of the constant interest rate
described in Jean-Pierre Fouque et al. [5]. Yoon, Lee, and Kim [15] studied
an option pricing formula on the stochastic elasticity of a variance model with
stochastic interest rates. Particularly, the authors found that the combined
structure of the model enhances the convexity of implied surface as time-to-
maturity shortens.

Based on the importance of the stochastic interest rate on option prices,
we discuss the pricing of discount barrier options under the Gaussian Hull-
White interest rate model. Bernard et al. [2] derived an exact pricing formula
for discount barrier options with a Hull-White interest rate using probabilistic
approaches. We utilize Mellin transform methods, one of the integral transform
methods, and the method of images to find the closed-form solution of the
discount barrier option with a stochastic interest rate.

The Mellin transform technique, which is defined by the multiplicative ver-
sion of the two-sided Laplace transform, assists the resolution of computation
complexity in comparison with other transform approaches. Yoon [13] studied
a closed-form solution for European options under a stochastic interest rate
using Mellin transforms. Yoon and Kim [14] exploited double Mellin trans-
forms to find the exact form solution for European vulnerable options under a
Hull-White stochastic interest rate and a constant interest rate. Additionally,
Jeon, Yoon, and Kang [8] considered the pricing of path-dependent options
using double Mellin transforms to investigate an explicit (closed)-form pricing
formula of path-dependent options, and Jeon et al. [7] derived the explicit so-
lution of time-dependent coefficients Black-Scholes partial differential equation
by exploiting the techniques of the double Mellin transform to find a closed-
form formula of vulnerable geometric Asian options.

The method of images was first proposed by Peter Buchen [3] and is closely
related to the reflection principle of the expectations solution. The author
found the closed solution of barrier option price more easily than the established
method. By using the method of images, we transform the partial differential
equation (PDE) with a restricted domain (a boundary condition and a final
condition) into the PDE with an unrestricted domain (a final condition) and
can solve the PDE problem more effectively.

This paper is organized as follows. Section 2 shows the use of the Mellin
transform approach in deriving the pricing formula of a European call option
with a Hull-White interest rate. Section 3 considers the pricing of discount
barrier options with the Hull-white interest rate, and we obtain the closed
solution of the discount barrier option using the method of images and the
Mellin transform. Section 4 shows an explicit analytic solution for the discount
double barrier option, and Section 5 presents concluding remarks.
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2. European call option pricing with a Hull-White interest rate

The pricing formula of European call options with the Hull-White stochastic
interest rate has been derived by Yoon [13]. However, in this section, we
investigate the closed-form solution of the European option price using other
methods. Particularly, by changing variables, we reduce the given PDE as the
form of the simplest heat equation, and using the Mellin transform method
we solve the reduced heat equation more easily. These approaches help us to
determine the closed-form solution of discount European barrier options with
a stochastic interest rate in Section 3.

If Xt is the value of the underlying asset (stock) of the option with a drift rate
of stock µt and the volatility of the underlying asset σ, then the dynamics of Xt

are described by the SDE dXt = µtXtdt+ σXtdWt, where Wt is the standard
Brownian motion. Under an equivalent martingale measure, the above model
is changed into the following SDEs

dXt = rtXtdt+ σXtdW
∗
t , drt = (b(t)− art)dt+ σ̌dW

(r)
t ,(2.1)

where W ∗t is the standard Brownian motion satisfying the following relation

W ∗t = Wt +
∫ t
0
µs−rs
σ , and the correlation of W ∗t and W

(r)
t is given by

d〈W ∗t ,W
(r)
t 〉t = ρxrdt,

where −1 ≤ ρxr ≤ 1. Additionally, rt represents the Hull-White interest
rate with a mean reversion rate of interest, a, volatility of interest rate, σ̌,
and average direction of interest rate movement, b(t). Under the risk-neutral
probability measure, the no-arbitrage price of a European call option with a
payoff function h(x) = (x−K)+ is expressed by

P (t, x, r) = E∗

{
exp

(
−
∫ T

t

rt∗dt
∗

)
(XT −K)+ |Xt = x, rt = r

}
.

Using the Feynman-Kac formula (cf. Bernt Oksendal [11]), P (t, x, r) is the
solution that satisfies the following PDE problem

L̂P (t, x, r) = 0, P (T, x, r) = h(x) = (x−K)+,

L̂ =
∂

∂t
+

1

2
σ2x2

∂2

∂x2
+r(x

∂

∂x
−I)+ρxrσσ̌x

∂2

∂x∂r
+(b(t)−ar) ∂

∂r
+

1

2
σ̌2 ∂

2

∂r2
,

(2.2)

where P (T, x, r) = h(x) is the final condition, and I is the identity operator.
To derive the closed-form formula of P (t, x, r) in (2.2), we review the bond

price formula. Based on the Hull-White interest rate model for the short rate,

r, given by drt = (b(t)− art)dt+ σ̌dW
(r)
t , the no-arbitrage price at time t of a

zero-coupon bond maturing at time T , defined by B(t, r;T ), is given by

B(t, r;T ) = E∗

{
exp

(
−
∫ T

t

rt∗dt
∗

)
| rt = r

}
,
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where the terminal condition B(T, r;T ) = 1.
Then, using the Feynman-Kac formula, we obtain the following PDE

∂B

∂t
+

1

2
σ̌2 ∂

2B

∂r2
+ (b(t)− ar)∂B

∂r
− rB = 0, B(T, r;T ) = 1,(2.3)

and the solution of the PDE has the form B(T − τ, r;T ) = A(τ)e−D(τ)r, where
τ = T − t, A(τ) and D(τ) are expressed by

A(τ) = exp

(
σ̌2

2a2

(
τ+

2

a
(e−aτ−1)− 1

2a
(e−2aτ−1)

)
−
∫ τ

0

b(T−τ∗)D(τ∗)dτ∗
)
,

D(τ) =
1− e−aτ

a
.

(2.4)

Next, to solve the PDE (2.2), we use the Mellin transform technique as in
Hassan and Adem [6]. For a locally Lebesgue integrable function f(s), s ∈ R+,
the Mellin transform M(f(s), w), w ∈ C is defined as

M(f(s), w) := f̂(w) =

∫ ∞
0

f(s)sw−1ds,

and if a < Re(w) < b and c such that a < c < b exists, the inverse of the Mellin
transform is given by

f(s) =M−1(f̂(w)) =
1

2πi

∫ c+i∞

c−i∞
f̂(w)x−wdw.

2.1. Transformation of PDE

By changing variables U(t, v) = P (t,x,r)
B(t,r;T ) and v = x

B(t,r;T ) in (2.2), we obtain

the following relations

∂P

∂t
= U

∂B

∂t
+B

∂U

∂t
− v ∂U

∂v

∂B

∂t
,
∂P

∂r
= U

∂B

∂r
− v ∂U

∂v

∂B

∂r
,

∂P

∂x
=
∂U

∂v
,
∂2P

∂x2
=

1

B

∂2U

∂v2
,
∂2P

∂r2
= U

∂2B

∂2r
− v ∂U

∂v

∂2B

∂r2
− v2

B

∂2U

∂v2

(
∂B

∂r

)2

,

∂P

∂r∂x
= − v

B

∂2U

∂v2
∂B

∂r
.

(2.5)

Then, plugging (2.5) into PDE (2.2) leads to

∂U

∂t
+

1

2

[
σ2 x

2

B2
− 2σσ̌ρxr

v2

B

∂B

∂r
+

1

2
σ̌2v2

(
1

B

∂B

∂r

)2
]
∂2U

∂v2
(2.6)

+
v

B

[
∂B

∂t
+

1

2
σ̌2 ∂

2B

∂r2
+ (b(t)− ar)∂B

∂r
− rB

]
∂U

∂v

+
v

B

[
∂B

∂t
+

1

2
σ̌2 ∂

2B

∂r2
+ (b(t)− ar)∂B

∂r
− rB

]
U = 0,
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and by (2.3), the above equation can be reduced to the following PDE:

∂U

∂t
+

1

2
σ̂2(t)v2

∂2U

∂v2
= 0, U(T, v) = h(v) = (v −K)+,(2.7)

where σ̂2(t) = σ2 + 2ρσσ̌X(t) + σ̌2X2(t) and X(t) = − 1
B
∂B
∂r .

2.2. Derivation of the option pricing formula with a stochastic
interest rate

This subsection derives the formula of European call options with a Hull-
white interest rate using the Mellin transform. Because the payoff function h
described in (2.7) is not bounded, the Mellin transform does not exist. There-
fore, we define h as limn→∞ hn(v) = h(v) by a bounded sequence hn such that
each hn is given by

hn(v) =

{
v −K, if K < v < n,

0, if v < K.

If we define a sequential function Un(t, v) satisfying the following PDE

∂Un
∂t

+
1

2
σ̂2(t)v2

∂2Un
∂v2

= 0, Un(T, v) = hn(v)(2.8)

on domain {(t, v) : 0 ≤ t < T, 0 ≤ v < ∞}, then the limit U(t, v) =
limn→∞ Un(t, v) has to be the solution of the PDE (2.7).

To solve the PDE (2.8), if we define ûn(t, v∗) as the Mellin transform of
Un(t, v), then the inverse of the Mellin transform is expressed by

Un(t, v) =
1

2πi

∫ c+i∞

c−i∞
ûn(t, v∗)v−v

∗
dv∗.(2.9)

Hence, plugging (2.9) into the PDE (2.8) yields

Un(t, v) =
1

2πi

∫ c+i∞

c−i∞
ĥn(v∗)eα(t)(v

∗2+v∗)v−v
∗
dv∗,(2.10)

where α(t) = 1
2

∫ T
t
σ̂2(t∗)dt∗ and ĥn(v∗) is the Mellin transform of hn(v).

To compute (2.10), we consider

R(t, v) =
1

2πi

∫ c+i∞

c−i∞
eα(t)(v

∗2+v∗)v−v
∗
dv∗.(2.11)

Because α(t) = 1
2

∫ T
t
σ̂2(t∗)dt∗ ≥ 0, by Lemma 1 described in Yoon [13], we

obtain

R(t, v) =
1

2
√
πα(t)

e−
1
4α(t)v

1
2 e−

(ln v)2

4α(t) .(2.12)



350 J. JEON AND J.-H. YOON

Remark 2.1. The Mellin convolution of f and g is given by the inverse Mellin

transform of f̂(v∗) ĝ(v∗) as follows:

f(v) ∗ g(v) = M−1v∗
[
f̂(v∗)ĝ(v∗); v

]
=

∫ ∞
0

u−1f
( v
u

)
g(u)du,

where f(v) ∗ g(v) is the symbol of the Mellin convolution of f and g, and M−1v∗
is the symbol of the inverse Mellin transform.

Because eα(t)(v
∗2+v∗) and ĥn(v∗) are the Mellin transforms of R(t, v) and

h(v), respectively, the Mellin convolution property mentioned above yields

Un(t, v) =

∫ n

0

hn(u)R(t,
v

u
)
1

u
du

=

∫ n

K

1

2
√
πα(t)

e−
α(t)
4

( v
u

) 1
2 1

u
e−

1
4α(t)

(ln v
u )

2

(v −K)du.

By taking the limit n→∞ on both sides, we have

U(t, v) =

∫ ∞
K

1

2
√
πα(t)

e−
α(t)
4

( v
u

) 1
2 1

u
e−

1
4α(t)

(ln v
u )

2

(v −K)du.(2.13)

Theorem 2.1. Under the given condition P (T, x, r) = (XT−K)+, the formula
of the European call option with a Hull-White interest rate is expressed by

P (t, x, r) = xΦ

(
d1(t,

x

KB(t, r;T )
)

)
−KB(t, r;T )Φ

(
d2(t,

x

KB(t, r;T )
)

)
,

d1(t, ξ1) :=
ln ξ1 + 1

2

∫ T
t
σ̂2(t∗)dt∗√∫ T

t
σ̂2(t∗)dt∗

, d2(t, ξ1) := d1(t, ξ1)−

√∫ T

t

σ̂2(t∗)dt∗,

(2.14)

where B(T − τ, r;T ) is the price of the zero-coupon bond mentioned in (2.3) to

(2.4), σ̂(t) =
√
σ2 + 2ρsrσσ̌M(t) + σ̌2M2(t) with M(t) = − 1

B
∂B
∂r and Φ is the

normal cumulative distribution function defined by Φ(z) = 1√
2π

∫ z
−∞ e−

z2

2 dz.

Proof. The direct calculation of (2.13) leads to

U(t, v) =

∫ ∞
K

1

2
√
πα(t)

e−
α(t)
4

( v
u

) 1
2 1

u
e−

1
4α (ln v

u )
2

(v −K)du

=
1

2
√
πα(t)

∫ ∞
K

e−
1

4α(t)
(ln v

u−α(t))
2

(v −K)
1

u
du

=
v

2
√
πα(t)

∫ ∞
K

e−
1

4α(t)
(ln v

u+α(t))
2 1

u
du

− K

2
√
πα(t)

∫ ∞
K

e−
1

4α(t)
(ln v

u−α(t))
2 1

u
du

= vΦ(d1(t,
v

K
))−KΦ(d2(t,

v

K
)),

(2.15)
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where

α(t) =
1

2

∫ T

t

σ̂2(t∗)dt∗, d1(t, ξ1) =
ln ξ1 + 1

2

∫ T
t
σ̂2(t∗)dt∗√∫ T

t
σ̂2(t∗)dt∗

,

d2(t, ξ1) =
ln ξ1 − 1

2

∫ T
t
σ̂2(t∗)dt∗√∫ T

t
σ̂2(t∗)dt∗

and Φ(z) =
1√
2π

∫ z

−∞
e−

z2

2 dz.

Because U(t, v) = P (t,x,r)
B(t,r;T ) and v = x

B(t,r;T ) , we obtain the closed-form solu-

tion of P (t, x, r)

P (t, x, r) = xΦ

(
d1(t,

x

KB(t, r;T )
)

)
−KB(t, r;T )Φ

(
d2(t,

x

KB(t, r;T )
)

)
.

(2.16)

�

3. Discount barrier options with a Hull-White interest rate

This section derives the closed-form solution of discount barrier options with
a stochastic interest rate driven by the Hull-White process. First, we set up
the PDE on the discount barrier option model and find a unique solution of
the PDE on the extended domain using Mellin transform methods and the
image solution using the PDE method of images described in Peter Buchen [3].
Combining the unique solution and the image solution, we derive the pricing
formula of discount barrier options with a Hull-White interest rate.

3.1. PDE formulation

This subsection considers a European up-and-out call option with a Hull-
White interest rate process rt and a discount stochastic barrier β(t) = H ·
B(t, r;T ) where H is a constant and B(t, r;T ) is the price of a zero coupon
at time t. Under the risk-neutral measure P ∗, the price of the up-and-out call
with the discount barrier β(t) is given by

P (t, x, r) = E∗

{
exp

(
−
∫ T

t

r∗t dt
∗

)
h̃(XT )|Xt = x, rt = r

}
,

and the payoff function h̃ is expressed by

h̃(XT ) = (XT −K)+ 1{max0≤γ≤T (Xγ−β(γ))<0}.

Using a similar method and the Feynman-Kac formula, the solution of
P (t, x, r) satisfies the following PDE

L̂P (t, x, r)=0, P (T, x, r)=h(x)=(x−K)+, x < H, P (t,H ·B(t, r;T ), r)=0,

L̂ =
∂

∂t
+

1

2
σ2x2

∂2

∂x2
+r(x

∂

∂x
− I)+ρxrσσ̌x

∂2

∂x∂r
+(b(t)− ar) ∂

∂r
+

1

2
σ̌2 ∂

2

∂r2

(3.1)

with the domain {(t, x) : 0 ≤ t ≤ T, 0 ≤ x < H ·B(t, r;T )}.
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Additionally, with the change of variables U(t, v) = P (t,x,r)
B(t,r;T ) and v = x

B(t,r;T )

in Section 2.1. We obtain the following reduced PDE:

∂U

∂t
+

1

2
σ̂2(t)v2

∂2U

∂v2
= 0, U(T, v)=h(v)=(v −K)+, v < H,U(t,H0)=0(3.2)

with the domain {(t, v) : 0 ≤ t ≤ T, 0 ≤ v < H}, σ̂2(t) = σ2 + 2ρσσ̌M(t) +
σ̌2M2(t), and M(t) = − 1

B
∂B
∂r .

3.2. Derivation of the discount barrier option pricing formula with
a stochastic interest rate: Image function approach

Remark 3.1. If q(t, x) is a differentiable function with respect to (t, x), then
the image function of q(t, x) denoted by q∗(t, x) = IBq(t, x) to the barrier B
has the four following properties:

(1) IB2 = I, where I is the identity operator.
(2) If L q(t, x) = 0, then LIB [q(t, x)] = 0.
(3) When x = B, IB [q] = q, that is, (I − IB)[q] = 0.
(4) If x > B (x < B) is the active domain of q(t, x), then x < B (x > B)

is the active domain of q∗(t, x),

where IB is the image operator with respect to the barrier level B, and L is a
parabolic differential operator.

Then, for a differentiable function q̃(t, x), to derive the solution of the fol-
lowing PDE

Lq̃(t, x) = 0; q̃(t, B) = 0, x > B , t < T, q̃(T, x) = g(x),(3.3)

where g(x) is the payoff function of q̃(t, x), we consider the related PDE with
unrestricted domain with respect to x

Lq(t, x) = 0; q(T, x) = g(x)1{x>B}, x > 0 , t < T.

Then, the solution of the PDE (3.3) is described by q̃(t, x) = q(t, x)− q∗(t, x).

In (3.2), letting W (t, v) = U(t,Hv), the PDE (3.2) is transformed into

∂W

∂t
+

1

2
σ̂(t)v2

∂2W

∂v2
=0,W (T, v)=h(Hv)=(Hv−K)+, v < 1,W (t, 1)=0(3.4)

in the region {(t, v) : 0 ≤ t ≤ T, 0 ≤ v < 1}.
From Remark 3.1, to solve the problem (3.4), we consider W̄ (t, v) satisfying

the following PDE:

∂W̄

∂t
+

1

2
σ̂(t)v2

∂2W̄

∂v2
= 0, W̄ (T, v) = h(Hv) 1{v<1}(3.5)
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with the domain {(t, v) : 0 ≤ t ≤ T, 0 ≤ v <∞}. Then, the Mellin transform
approach and the Mellin convolution property mentioned before yield

W̄ (t, v) =
1

2πi

∫ c+i∞

c−i∞
ĥ(v∗)eα(t)(v

∗2+v∗)dv∗ and

W̄ (t, v) =

∫ ∞
0

h(Hu) 1{u<1}R(t,
v

u
)
1

u
du,

(3.6)

respectively, where ĥ is the Mellin transform of h(Hv)1{v<1} and R(t, v) is

denoted by (2.13). If we let Q(t, v∗) = α(t) (v∗2+v∗), then Q(t, v∗) = Q(t,−1−
v∗) and this relation yields

(3.7)

R(t, v) =
1

2πi

∫ c+i∞

c−i∞
eQ(t,v∗)v−v

∗
dv∗

=
1

2πi

∫ c+i∞

c−i∞
eQ(t,−1−v∗)v1+v

∗
dv∗ = v R(t,

1

v
).

From (3.6), we obtain

vW̄ (t,
1

v
) =

∫ ∞
0

h(
H

u
) 1{u>1}R(t,

v

u
)
1

u
du.(3.8)

Theorem 3.1. Let W̄ ∗(t, v) = v W̄ (t, 1v ). Then W̄ ∗(t, v) is an image function

of W̄ (t, v) satisfying L̂ W̄ ∗(t, v) = 0, where L̂ = ∂
∂t + 1

2 σ̂(t)v2 ∂2

∂v2 . Moreover,
the solution of (3.2) is given by

U(t, v) = Ū(t, v)− Ū∗(t, v) = Ū(t, v)− v

H
Ū(t,

H2

v
),(3.9)

where Ū(t, v) is a solution of L̂ Ū(t, v) = 0 with terminal condition Ū(T, v) =

h(v)1{v<H}, and Ū∗(t, v) = v
H Ū(t, H

2

v ) is the image function of Ū(t, v).

Proof. As described previously, using the convolution property of the Mellin
transform, W̄ (t, v) in (3.6) is a solution of (3.5). Therefore, from the relation-
ship between (3.5)(PDE problem) and (3.6)(Mellin convolution), W̄ ∗(t, v) =

vW̄ (t, 1v ) given by (3.8) is a solution of the PDE L̂ W̄ ∗(t, v) = 0 with the termi-

nal condition W̄ ∗(T, v) = v h(Hv ) 1{v>1}. Additionally, to prove that W̄ ∗(t, v)

is an image function of W (t, v), let us define W (t, v) = W̄ (t, v)− W̄ ∗(t, v).
Then,

L̂ W̄ (t, v) = 0 and L̂ W̄ ∗(t, v) = 0, W (t, 1) = W̄ (t, 1)− W̄ ∗(t, 1) = 0,(3.10)

and

W (T, v) = W̄ (T, v)− W̄ ∗(T, v)

= h(Hv)1{v<1} − h(
H

v
)v1{v>1} =

{
h(Hv) if v < 1

−vh(Hv ) if v > 1
(3.11)
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are satisfied. Hence, from the properties of the image function mentioned in
Peter Buchen [4] and Remark 3.1, W̄ ∗(t, v) is the image function of W̄ (t, v).

Additionally, fromW (t, v) = W̄ (t, v)−W̄ ∗(t, v) and (3.10), we have L̂W (t, v)
= 0 and by combining (3.10) and (3.11), W (t, v) is the solution of the PDE
(3.4), which is expressed by

W (t, v) = W̄ (t, v)− vW̄ (t,
1

v
).(3.12)

Finally, by replacing v with v
H in (3.12), we obtain

W (t,
v

H
) = W̄ (t,

v

H
)− v

H
W̄ (t,

H

v
)(3.13)

and from W (t, v) = U(t,Hv), U(t, v) is given by

U(t, v) = Ū(t, v)− Ū∗(t, v) = Ū(t, v)− v

H
Ū(t,

H2

v
).(3.14) �

Theorem 3.2. The price of the discount barrier call option with a Hull-White
interest rate defined in (3.1), is described by

P (t, x, r) = xΦ
(
d1(t,

x

KB
)
)
−KBΦ

(
d2(t,

x

KB
)
)

− xΦ
(
d1(t,

x

HB
)
)

+KBΦ
(
d2(t,

x

HB
)
)

−HBΦ

(
d1(t,

H2B

Kx
)

)
+
xK

H
Φ

(
d2(t,

H2B

xK
)

)
+HBΦ

(
d1(t,

HB

x
)

)
− xK

H
Φ

(
d2(t,

HB

x
)

)
,

(3.15)

where d1 and d2 are defined by Theorem 2.1, and B = B(t, r;T ) is the price of
the zero-coupon bond denoted by (2.3) to (2.4).

Proof. In Theorem 3.1, the Ū(t, v) is the solution satisfying

L̂Ū = 0, Ū(T, v) = h(v)1{v<H} = (v −K)+1{v<H},(3.16)

and, using the same procedure as in Section 2,

Ū(t, v) =

∫ H

K

1

2
√
πα

e−
α
4

( v
u

) 1
2 1

u
e−

1
4α (ln v

u )
2

(v −K)du

=

∫ ∞
K

1

2
√
πα

e−
α
4

( v
u

) 1
2 1

u
e−

1
4α (ln v

u )
2

(v −K)du

−
∫ ∞
H

1

2
√
πα

e−
α
4

( v
u

) 1
2 1

u
e−

1
4α (ln v

u )
2

(v −K)du

= vΦ
(
d1(t,

v

K
)
)
−KΦ

(
d2(t,

v

K
)
)

−
(
vΦ
(
d1(t,

v

H
)
)
−KΦ

(
d2(t,

v

H
)
))

.

(3.17)
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By (3.9) in Theorem 3.1, we obtain U(t, v) = Ū(t, v)− v
H Ū(t, H

2

v ).
Therefore, U(t, v) yields

U(t, v) = vΦ
(
d1(t,

v

K
)
)
−KΦ

(
d2(t,

v

K
)
)

−
(
vΦ
(
d1(t,

v

H
)
)
−KΦ

(
d2(t,

v

H
)
))

−H Φ

(
d1(t,

H2

Kv
)

)
+
vK

H
Φ

(
d2(t,

H2

Kv
)

)
+

(
H Φ

(
d1(t,

H

v
)

)
− vK

H
Φ

(
d2(t,

H

v
)

))
.

(3.18)

Because U(t, v) = P (t,x,r)
B(t,r;T ) , v = x

B(t,r;T ) ,

P (t, x, r) = xΦ
(
d1(t,

x

KB
)
)
−KBΦ

(
d2(t,

x

KB
)
)

− xΦ
(
d1(t,

x

HB
)
)

+KBΦ
(
d2(t,

x

HB
)
)

−HBΦ

(
d1(t,

H2B

Kx
)

)
+
xK

H
Φ

(
d2(t,

H2B

xK
)

)
+HBΦ

(
d1(t,

HB

x
)

)
− xK

H
Φ

(
d2(t,

HB

x
)

)
.

(3.19)

�

4. Discount double barrier options with a Hull-White interest rate

This section investigates the price of discount double barrier options with
a Hull-White interest rate utilizing consecutive chains of image operators de-
scribed by Bucheon and Konstandatos [5] and Mellin transform techniques.

4.1. PDE formulation

We consider the arbitrage-free pricing of double knock-out discount barrier
call options. A double barrier option has two barriers that contain an upstream
barrier at H · B(t, r;T ) and a downstream barrier at L · B(t, r;T ). If the
underlying asset Xt reaches one of the two barriers at any time before the
expiration, then the invalidity of the option contract is aroused. Then, we
obtain the price of double knock-out discount barrier options as follows:

P (t, x, r) = E∗

{
exp

(
−
∫ T

t

r∗t dt
∗

)
ĥ(XT )|Xt = x, rt = r

}
,

where the payoff function h is given by

ĥ(XT ) = (XT −K)+ 1{{max0≤γ≤T (Xγ−H·B(γ))<0}∩{min0≤γ≤T (Xγ−L·B(γ))>0}}.
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Using a similar method and the Feynman-Kac formula, the solution of
P (t, x, r) satisfies the following PDE

L̂P (t, x, r) = 0,

P (T, x, r) = h(x) = (x−K)+ L < x < H,

P (t,H ·B(t, r;T ), r) = P (t, L ·B(t, r;T ), r) = 0,

L̂ =
∂

∂t
+

1

2
σ2x2

∂2

∂x2
+r(x

∂

∂x
− I)+ρxrσσ̌x

∂2

∂x∂r
+(b(t)− ar) ∂

∂r
+

1

2
σ̌2 ∂

2

∂r2

(4.1)

with the domain {(t, x) : 0 ≤ t ≤ T, L ·B(t, r;T ) < x < H ·B(t, r;T )}.
By changing variables Q(t, v) = P (t,x,r)

B(t,r;T ) and v = x
B(t,r;T ) described previ-

ously, PDE (4.1) leads to the following PDE:

∂Q

∂t
+

1

2
σ̂2(t)v2

∂2Q

∂v2
= 0, Q(T, v) = h(v) = (v −K)+,

L < v < H, Q(t,H) = Q(t, L) = 0
(4.2)

in the region {(t, v) : 0 ≤ t ≤ T, L < x < H}.
Then, we obtain the solution of PDE (4.2) using the method of images stated

in Remark 3.1.

4.2. Derivation of the double discount barrier options formula with
a stochastic interest rate: The method of images and Mellin
transform approaches

To solve PDE (4.2), from Remark 3.1, we consider the following related PDE
in an unrestricted domain

∂Q̃

∂t
+

1

2
σ̂2(t)v2

∂2Q̃

∂v2
= 0, Q̃(T, v) = (v −K)+1{L<v<H}(4.3)

on domain {(t, v) : 0 ≤ t ≤ T, 0 ≤ v <∞}.
Using the Mellin transform approach, we have

Q̃(t, v) =

∫ H

L

1

2
√
πα

e−
α
4

( v
u

) 1
2 1

u
e−

1
4α (ln v

u )
2

(v −K)+du

=

∫ H

L∧K

1

2
√
πα

e−
α
4

( v
u

) 1
2 1

u
e−

1
4α (ln v

u )
2

(v −K)du

=

∫ ∞
L∧K

1

2
√
πα

e−
α
4

( v
u

) 1
2 1

u
e−

1
4α (ln v

u )
2

(v −K)du

−
∫ ∞
H

1

2
√
πα

e−
α
4

( v
u

) 1
2 1

u
e−

1
4α (ln v

u )
2

(v −K)du

= vΦ
(
d1(t,

v

L ∧K
)
)
− (L ∧K)Φ

(
d2(t,

v

L ∧K
)
)

−
(
vΦ
(
d1(t,

v

H
)
)
−KΦ

(
d2(t,

v

H
)
))

,

(4.4)
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where a ∧ b :=

{
b, if a ≥ b
a, if a < b.

Contrary to the image operator of the discount single barrier option with
the stochastic interest rate described in Section 3, the image operator of the
discount double barrier option with the stochastic interest rate is complex and is
expressed by any sequential sum of successive image operators. From Bucheon
and Konstandatos [4], we use the sum of the continuative image operators to

derive the semi-analytic formula of PDE (4.1) with respect to Q̃(t, v).

Lemma 4.1. Let KHL denote the doubly infinite chain of image operators

KHL = I − IL + IHL − ILHL + IHLHL + · · ·
− IH + ILH − IHLH + ILHLH + · · · .

(4.5)

Then, the solution of PDE (4.2) yields Q(t, v) = KHL [Q̃(t, v)], where Q̃(t, v) is
given by (4.4).

Proof. First, because KHL is the infinite chain of the image operators, by Re-

mark 3.1, we have LKHL [Q̃(t, v)] = 0. Additionally, if we define

KHL = I − IH + IHL − ILHL + · · · ,
then, by the symbol of consecutive image operators mentioned in Bucheon and
Konstandatos [4], Iba = IbIa, the factorization of KHL satisfies

KHL = (I − IL)KHL,

and we obtain KHL [Q̃(t, L)] = KHL [Q̃(t,H)] = 0.

Finally, let KHL [Q̃(T, v)] = Q̃(T, v) + image sequence of Q̃(T, v) in (4.5).

From (4.5), Q̃(T, v) = h(v) for L < v < H and from the property (4) of

the image operator in Remark 3.1, the image sequence of Q̃(T, v) vanishes at

an outside interval (L,H). Hence, KHL [Q̃(T, v)] = h(v).

Therefore, KHL [Q̃(t, v)] is the solution of the PDE (4.3) and, then, U(t, v) =

KHL [Q̃(t, v)]. �

Remark 4.1. For positive constants α, β, and γ, we consider the corresponding
image operator Iα, Iβ , and Iγ respectively. Then, by Lemma 3.5 in Buchen
and Konstandatos [4], we obtain

Iγβα = I γα
β
,(4.6)

where Iγβα = IγIβIα.

Remark 4.2. For integer n > 0, let KnLH := ILHILH · · · ILH (n-LH pairs).
Using Remark 4.1 and induction, we have

KnLH = IHIHn+1

Ln
and K−nLH = IHIH−n+1

L−n
.(4.7)

The proof of (4.7) is described by Lemma 3.7 in Buchen and Konstandatos
[4]. Then, Remark 4.1 and Remark 4.2 lead to the following lemma.
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Lemma 4.2. (a) KnLH = K−nHL.

(b) KHL = (I − IL)

∞∑
n=−∞

KnLH = (I − IH)

∞∑
n=−∞

KnLH

= (I − IL)

∞∑
n=−∞

KnHL = (I − IH)

∞∑
n=−∞

KnHL.

Proof. The proof of this lemma follows from Corollary 3.8, Lemma 3.9, and
Corollary 3.10 in Buchen and Konstandatos [4]. �

Hence, by Lemma 4.1, we obtain

Q(t, v) = KHL [Q̃(t, v)] = (I − IL)

∞∑
n=−∞

KnLH [Q̃(t, v)].(4.8)

Theorem 4.1. The price of the discount double barrier call option with a
Hull-White interest rate, defined by in (4.1), is expressed by

P (t, x, r) =

∞∑
n=−∞

[
BHn

Ln
Q̃(t,

H2n

L2n

x

B
)− x Hn

Ln+1
Q̃(t,

H2n

L2n−2
x

B
)

]
,(4.9)

where Q̃(t, ·) is defined by (4.4), and B = B(t, r;T ) is the bond price from time
t to the expiry time T given by (2.3) to (2.4).

Proof. By (4.8),

Q(t, v) =

∞∑
n=−∞

KnLH [Q̃(t, v)]−
∞∑

n=−∞
ILK−nLH [Q̃(t, v)].(4.10)

Then, from KnLH = IHIHn+1

Ln
in Remark 4.2 and the image function of Q̃(t, v)

expressed by IHQ̃(t, v) = v
H Q̃(t, H

2

v ) in Theorem 3.1,

KnLH [Q̃(t, v)] = IH
[
Ln

Hn+1
vQ̃(t,

H2n+2

L2n

1

v
)

]
=
Ln

Hn
Q̃(t,

H2n

L2n
v),(4.11)

and, similarly, by K−nLH = IHIH−n+1

L−n
in Remark 4.2,

ILK−nLH [Q̃(t, v)] = IL
[
L−n

H−n
Q̃(t,

H−2n

L−2n
v)

]
=

Hn

Ln+1
vQ̃(t,

L2n

H2n

L2

v
).(4.12)

Therefore,

Q(t, v) =

∞∑
n=−∞

Ln

Hn
Q̃(t,

H2n

L2n
v)−

∞∑
n=−∞

v
Hn

Ln+1
Q̃(t,

L2n+2

H2n

1

v
),(4.13)

where Q̃(t, ·) is given by (4.4).

Finally, from Q(t, v) = P (t,x,r)
B(t,r;T ) , v = x

B(t,r;T ) , and (4.13), we obtain the

desired results in Theorem 4.1. �
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5. Concluding remarks

This paper investigated whether an exact form solution for the discount
European barrier option with a Hull-White stochastic interest rate can be ex-
pressed by cumulative normal distribution functions, and whether the semi-
analytic solution for the discount double barrier option under a Hull-White
stochastic interest rate can be described by the infinite sum of cumulative nor-
mal distribution functions. The solutions were derived using the method of im-
ages and Mellin transform approach. The Mellin transform method resolves the
complexity of the calculation compared to the probabilistic techniques, Fourier
transforms, and the method of change of variables in other types of options
as well as the barrier options. Additionally, research using Mellin transform
methods on option pricing is ongoing.
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